
Bigint Computing Journal
Volume 4, Issue 1, 2026, pp. 9-14
ISSN: 3032-5374
DOI: https://doi.org/10.55537/bigint.v4i1.1527
https://journal.aira.or.id/bigint/index

© 2026 The Author(s). Published by Ali Institute of Research and Publication.

This is an Open Access article distributed under the terms of the Creative Commons Attribution-ShareAlike 4.0
International License (CC BY-SA 4.0).

Performance Evaluation of YOLOv8 for Vehicle License Plate Detection
Using Standard Object Detection Metrics

Kardandi Alfarizi Siregar a,*, Bhagaskara Cahyadi a, Legiman Samosir a, Supiyandi b

a Department of Computer Science, Universitas Islam Negeri Sumatera Utara, Medan, Indonesia

b Department of Computer System, Universitas Pembangunan Panca Budi, Medan, Indonesia

A B S T R A C T

Vehicle license plate detection is a crucial computer vision task for traffic monitoring, automated parking, and
vehicle identification. This study evaluates the performance of a YOLO-based license plate detection system
implemented in Python and executed on Google Colab to ensure reproducibility. A public dataset of vehicle
images with variations in lighting conditions and viewing angles is used for testing. Performance is assessed
using precision, recall, F1-score, mAP@0.5, and mAP@0.5:0.95. The results show a precision of 0.7653 and a
recall of 0.6809, yielding an F1-score of 0.7206. The mAP@0.5 reaches 0.7776, while the mAP@0.5:0.95 drops
to 0.3572. As a contribution, this work provides a simple and replicable baseline evaluation workflow for YOLO-
based license plate detection using standard object-detection metrics. The large gap between mAP@0.5 and
mAP@0.5:0.95 indicates that the model often detects the presence of license plates but struggles to localize
them precisely under stricter IoU thresholds, highlighting localization sensitivity for small objects under real-
world variations. These findings can guide future improvements through dataset diversification, augmentation,
and higher-resolution training to enhance bounding box accuracy.

KEYWORD: Google Colab, License Plate Detection, Object Detection, Performance Evaluation, YOLOv8.

* Corresponding author:
 Kardandi Alfarizi Siregar ,
 Department of Computer Science, Universitas Islam Negeri Sumatera Utara, Medan, Indonesia
 Email: kardandi83@gmail.com
 Article History: Received: 2026-01-14; Accepted: 2026-01-22

1. INTRODUCTION

Advances in computer vision technology have significantly contributed to automating object identification

processes across various sectors, including transportation and security. One prominent application is vehicle

license plate detection and recognition, commonly referred to as Automatic License Plate Recognition (ALPR),

which reduces reliance on manual identification procedures [1]. Within the context of intelligent transportation

systems, ALPR is an essential component for intelligent tolling, access control, security surveillance, and data-

driven traffic management [2].

As the number of vehicles continues to increase, the demand for fast and accurate automated detection

systems has grown accordingly [3]. Deep learning-based methods have been widely developed because they can

adaptively extract features from images and perform robustly under diverse environmental conditions. A popular

approach for real-time object detection is You Only Look Once (YOLO), introduced by Redmon et al. [4], which has

evolved through multiple variants emphasizing the speed–accuracy trade-off (e.g., YOLOv4 and YOLOv7). In

practical deployments, modern YOLO families (e.g., YOLOv8) are widely available through the Ultralytics

framework and can be readily integrated with Python for experimentation and reproducibility [5] [6].

Although YOLO has been extensively adopted, license plate detection presents specific challenges due to

the relatively small object size, variations in camera viewpoint, illumination changes, motion blur, and potential

vehicle occlusion [7]. Large-scale license plate dataset studies indicate that real-world variations such as distance

differences, tilt, and weather disturbances significantly affect localization quality and recognition accuracy [8].

https://issn.brin.go.id/terbit/detail/20240127301890830

Bigint Computing Journal, Volume 4, Issue 1, 2026, pp. 9-14 ISSN: 3032-5374

 10 Kardandi Alfarizi Siregar

Therefore, evaluation should employ metrics that not only assess detection success at a single IoU threshold but

also measure localization quality more strictly, such as mAP@[0.5:0.95] [9].

Nevertheless, an explicit research gap remains. Many ALPR studies tend to focus on implementation

outcomes or complete pipelines (detection + OCR), and performance reporting is often limited to a single IoU

threshold (e.g., mAP@0.5). Such reporting can obscure a key issue for small objects like license plates: bounding-

box localization precision under stricter IoU thresholds. Moreover, there are still relatively few evaluation-

oriented studies that provide a simple, well-documented, and easily reproducible workflow for YOLO-based

license plate detection on public image datasets, while explicitly reporting stricter metrics such as mAP@0.5:0.95

to distinguish detection reliability (“finding the object”) from localization accuracy.

Based on this context, this study evaluates the performance of a YOLO-based vehicle license plate

detection system implemented in Python and deployed on Google Colab. The research questions include: (1) how

the license plate detection system is implemented using YOLO in Python on Google Colab; (2) how well the

developed detection system performs; (3) how performance is reflected through precision, recall, F1-score, and

mAP; and (4) how effectively the system detects license plates under variations in illumination and viewing angles.

The objectives are to implement the system, evaluate its performance using relevant metrics, and analyze

detection capability under diverse image conditions. Practically, this work is expected to serve as a concise

reference for developing efficient and easily reproducible license plate detection systems.

To maintain the scope of this study, several limitations are applied: the work is restricted to license plate

detection only (without character recognition/OCR), uses YOLO without comparison to other methods, relies on

static images (not video), and does not discuss detailed model parameter optimization. The evaluation focuses on

detection metrics (precision, recall, F1-score, and mAP); therefore, computational time measurement is not

examined in depth. Accordingly, the main contribution of this study is to provide a simple and reproducible

baseline evaluation for YOLO-based license plate detection on Google Colab, while highlighting the performance

gap between mAP@0.5 and mAP@0.5:0.95 as an indicator of localization sensitivity for small objects under

varying conditions.

2. METHODOLOGY

This research uses an experimental approach by implementing and testing a vehicle license plate

detection system using YOLO based on Python. This experiment focuses on evaluating the detection performance

on a vehicle image dataset.

The dataset used in this research consists of 359 images for the training data (train), 45 images for the

testing data (test), and 45 images for the validation data (val). These images were obtained from a public dataset

source that includes variations in lighting conditions, angles of view, and object distances, which present

challenges for the model in detecting license plates under various real-world conditions.

The dataset consists of vehicle images with license plate objects that have been manually labeled. The

training data is used to train the YOLO model, while the testing and validation data are used to evaluate the model's

performance. Before inference, the dataset undergoes preprocessing, which includes resizing and normalizing the

images to match the input requirements of the YOLOv8 model.

The system is implemented using Google Colab as a cloud-based computing environment, with support

from the OpenCV, NumPy, and Ultralytics YOLO libraries for training and inference of the YOLOv8 model. The

choice of YOLOv8 is based on the availability of a mature implementation, extensive deployment support, and

competitive detection performance across various object scenarios [10].

In this study, the YOLOv8 model is fine-tuned using a specific dataset for vehicle license plate

detection[11]. In this experiment, the model does not use an existing pretrained model but is trained from scratch

with the prepared dataset. This approach was chosen to obtain a more optimal model for detecting vehicle license

plates, considering the unique and varied characteristics of the dataset.

https://issn.brin.go.id/terbit/detail/20240127301890830
mailto:mAP@[0.5:0.95

Bigint Computing Journal, Volume 4, Issue 1, 2026, pp. 9-14 ISSN: 3032-5374

Kardandi Alfarizi Siregar  11

Figure 1. Research Flowchart

The research flow consists of five main steps:

1. Dataset Collection: Data is obtained from a public dataset source focusing on vehicle images with clearly visible

license plates.

2. Image Preprocessing: The images are processed with resizing and normalization to match the input

requirements of the YOLOv8 model.

3. Inference using YOLO Model: The YOLO model is used to generate bounding boxes that mark the location of

license plates in vehicle images.

4. Detection Result Evaluation: The detection results are compared with the ground truth to measure detection

accuracy using predefined evaluation metrics.

5. Result Analysis: The detection results are analyzed to identify the system’s strengths and limitations.

Performance evaluation is conducted using precision, recall, and mean Average Precision (mAP) metrics.
Precision and recall are calculated based on the concepts of True Positive (TP), False Positive (FP), and False
Negative (FN). Meanwhile, mAP is calculated following modern object detection evaluation practices, which
measure the average area of the precision-recall curve across different Intersection over Union (IoU) thresholds.
On the COCO benchmark, AP is calculated at various IoU thresholds and is often reported as mAP@[0.5:0.95],
which is the average AP at IoU ranging from 0.50 to 0.95 with a 0.05 interval [12] [13].

3. RESULTS AND DISCUSSION

The discussion below addresses the hardware limitations that impacted the license plate detection

system's performance. In this study, the use of Google Colab as the computational environment posed limitations

in terms of computational capacity, particularly in processing large and complex datasets. Although the evaluation

results were quite good, these limitations may have affected detection accuracy and inference speed, especially for

images with extreme conditions.

https://issn.brin.go.id/terbit/detail/20240127301890830

Bigint Computing Journal, Volume 4, Issue 1, 2026, pp. 9-14 ISSN: 3032-5374

 12 Kardandi Alfarizi Siregar

Testing was conducted on the YOLOv8 model, which was used to detect a single class of objects: vehicle

license plates. Performance evaluation was carried out using key metrics: precision, recall, mAP@0.5, and

mAP@0.5:0.95, as commonly used in object detection evaluations. Based on the evaluation results, the model

shows good performance but still faces challenges under more complex conditions, especially when the IoU

threshold is tightened.

Table 1. Metrics and Values

Metrik Nilai

Precision 0,7653

Recall 0,6809

F1-score (2PR/(P+R)) 0,7206

mAP@0.5 0,7776

mAP@0.5:0.95 0,3572

The precision value of 0.7653 indicates that most of the bounding box predictions made by the model are

correct. However, the recall value of 0.6809 suggests that a significant number of license plates in the test images

were not detected. Based on the precision and recall values, the F1-score of 0.7206 reflects a good balance in

performance. Nevertheless, there is still room for improvement, particularly in the model's ability to capture all

license plate objects.

Figure 2. Model evaluation matriks

The mAP@0.5 value of 0.7776 shows good detection accuracy at an IoU threshold of 0.5. However, the

drop in mAP@0.5:0.95 to 0.3572 suggests that when evaluation is conducted at stricter IoU thresholds, the

precision of bounding box positioning and size remains unstable [14]. This can be attributed to factors such as:

1. Small license plate sizes, which make it harder for the model to make accurate detections.

2. Light reflections that can obscure the visibility of the plates in images.

3. Partial occlusion or cases where parts of the license plate are blocked by other objects.

4. Extreme angles, which make the license plates difficult to read.

In general, mAP@[0.5:0.95] is stricter than mAP@0.5, as it measures localization accuracy across various

IoU thresholds [15]. Therefore, a large difference between mAP@0.5 and mAP@[0.5:0.95] often indicates that

while the model is consistent in finding objects, its bounding box precision still needs improvement, particularly

for small objects like vehicle license plates [16].

https://issn.brin.go.id/terbit/detail/20240127301890830

Bigint Computing Journal, Volume 4, Issue 1, 2026, pp. 9-14 ISSN: 3032-5374

Kardandi Alfarizi Siregar  13

Figure 3. Successful License Plate Detection

Based on the results obtained, performance improvements can be directed towards several areas:

1. Expanding and diversifying the dataset, to include various conditions such as daytime and nighttime, rain,

long-distance shots, and extreme angles to increase the model's robustness in real-world scenarios.

2. Relevant data augmentation, such as adjusting brightness/contrast, adding blur, and changing the perspective

of images, to make the model more adaptive to different conditions.

3. Re-training with higher input resolution, to improve localization accuracy for small objects like license plates,

which often require more detailed image information for accurate detection.

4. Hyperparameter optimization and more robust training strategies, to improve the model's resilience against

a wider range of real-world conditions and enable better performance with more complex images.

4. CONCLUSION

The vehicle license plate detection system using YOLO based on Python was successfully implemented in

the Google Colab environment and demonstrated the ability to automatically generate bounding boxes around

license plates in vehicle images.

The evaluation results indicate that the model performs relatively well, with a precision of 0.7653, recall

of 0.6809, F1-score of 0.7206, mAP@0.5 of 0.7776, and mAP@0.5:0.95 of 0.3572. The mAP@0.5 value is relatively

high, indicating good detection accuracy at the IoU threshold of 0.5. However, the mAP@0.5:0.95 value shows a

noticeable decline, suggesting that localization accuracy at stricter IoU thresholds needs improvement.

These findings demonstrate that while YOLO is capable of detecting license plates reliably, especially in

less complex conditions, there is still room for improvement in terms of detection precision, particularly under

challenging conditions, such as small object detection, occlusion, and extreme angles.

This study provides a baseline evaluation of YOLO performance for simple and easily replicable license plate

detection systems. However, the study's limitations, such as reliance on Google Colab's computational resources

and challenges in detecting small objects, should be addressed in future research.

Future research should focus on optimizing model parameters, increasing dataset diversity, and
expanding testing to include real-time video data or more challenging scenarios to bring license plate detection
systems closer to real-world implementation needs. Additionally, improving input resolution, utilizing data
augmentation techniques, and experimenting with multi-scale detection strategies can further enhance the
model’s performance in detecting small objects like license plates under various environmental conditions.

https://issn.brin.go.id/terbit/detail/20240127301890830

Bigint Computing Journal, Volume 4, Issue 1, 2026, pp. 9-14 ISSN: 3032-5374

 14 Kardandi Alfarizi Siregar

REFERENCES

[1] L. Satya, M. R. D. Septian, M. W. Sarjono, M. Cahyanti, and E. R. Swedia, “Sistem pendeteksi plat nomor polisi

kendaraan dengan arsitektur YOLOv8,” Sebatik, vol. 27, no. 2, pp. 753–761, Dec. 2023.
https://doi.org/10.46984/sebatik.v27i2.2374

[2] L. Alashrafi, R. Badawood, H. Almagrabi, M. Alrige, F. Alharbi, and O. Almatrafi, “Benchmarking lightweight
YOLO object detectors for real-time hygiene compliance monitoring,” Sensors, vol. 25, no. 19, Oct. 2025.
https://doi.org/10.3390/s25196140

[3] N. H. Harani, C. Prianto, and M. Hasanah, “Deteksi objek dan pengenalan karakter plat nomor kendaraan
Indonesia menggunakan metode convolutional neural network (CNN) berbasis Python,” Jurnal Teknik
Informatika, vol. 11, no. 3, pp. 47–53, Aug. 2019. https://doi.org/10.23960/jitet.v11i1.2897

[4] P. Jiang, D. Ergu, F. Liu, Y. Cai, and B. Ma, “A review of YOLO algorithm developments,” Procedia Computer
Science, vol. 199, pp. 1066–1073, 2022. https://doi.org/10.1016/j.procs.2022.01.135

[5] M. R. Joyonegoro and E. Setyati, “Deteksi dan pengenalan dua variasi plat nomor kendaraan bermotor di
Indonesia dengan variasi waktu dan pencahayaan memanfaatkan YOLOv8 dan CNN,” KONVERGENSI, vol.
20, no. 1, pp. 11–17, Jan. 2024. https://doi.org/10.24912/jiksi.v10i1.17852

[6] R. Sapkota and M. Karkee, “Ultralytics YOLO evolution: An overview of YOLO26, YOLO11, YOLOv8, and
YOLOv5 object detectors for computer vision and pattern recognition,” arXiv preprint, Oct. 2025.
https://doi.org/10.48550/arXiv.2510.09653

[7] N. A. Kurniawan and C. A. Sari, “Automatic license plate detection system with YOLOv11 algorithm,” Journal
of Applied Informatics and Computing (JAIC), vol. 9, no. 6, p. 3097, Dec. 2025.
https://doi.org/10.30871/jaic.v9i6.11484

[8] H. Moussaoui et al., “Enhancing automated vehicle identification by integrating YOLOv8 and OCR
techniques for high-precision license plate detection and recognition,” Scientific Reports, vol. 14, no. 1, Dec.
2024. https://doi.org/10.1038/s41598-024-65272-1

[9] R. Laroca et al., “A robust real-time automatic license plate recognition based on the YOLO detector,” in
Proc. Int. Joint Conf. Neural Networks (IJCNN), Apr. 2018. https://doi.org/10.1109/IJCNN.2018.8489629

[10] F. Martadinata, A. Firdaus, and M. R. T. Amal, “Detection and identification of vehicle license plates in
Indonesia transportation system based on deep learning using YOLOv11 and EasyOCR,” Jurnal Sisfokom
(Sistem Informasi dan Komputer), vol. 14, no. 4, pp. 573–578, Oct. 2025.
https://doi.org/10.32736/sisfokom.v14i4.2524

[11] N. B. S. Makkar, “VajraV1—The most accurate real-time object detector of the YOLO family,” arXiv preprint,
Dec. 2025. https://doi.org/10.48550/arXiv.2512.13834

[12] M. S. Zandi and R. Rajabi, “Deep learning based framework for Iranian license plate detection and
recognition,” Multimedia Tools and Applications, Jan. 2022. https://doi.org/10.1007/s11042-022-12023-x

[13] R. Sapkota, Z. Meng, M. Churuvija, X. Du, Z. Ma, and M. Karkee, “Comprehensive performance evaluation of
YOLOv12, YOLO11, YOLOv10, YOLOv9, and YOLOv8 on detecting and counting fruitlet in complex orchard
environments,” arXiv preprint, Feb. 2025. https://doi.org/10.48550/arXiv.2407.12040

[14] S. Gholinavaz, N. Saeedi, and S. S. Gharehveran, “Robustness analysis of YOLO and Faster R-CNN for object
detection in realistic weather scenarios with noise augmentation,” Scientific Reports, vol. 15, no. 1, Dec.
2025. https://doi.org/10.1038/s41598-025-28737-5

[15] N. Jegham, C. Y. Koh, M. Abdelatti, and A. Hendawi, “YOLO evolution: A comprehensive benchmark and
architectural review of YOLOv12, YOLO11, and their previous versions,” arXiv preprint, Mar. 2025.
https://doi.org/10.48550/arXiv.2411.00201

[16] V. N. Ribeiro and N. S. T. Hirata, “Efficient video-based ALPR system using YOLO and visual rhythm,” arXiv
preprint, Jan. 2025. https://doi.org/10.48550/arXiv.2501.02270

https://issn.brin.go.id/terbit/detail/20240127301890830
https://doi.org/10.46984/sebatik.v27i2.2374
https://doi.org/10.3390/s25196140
https://doi.org/10.23960/jitet.v11i1.2897
https://doi.org/10.1016/j.procs.2022.01.135
https://doi.org/10.24912/jiksi.v10i1.17852
https://doi.org/10.48550/arXiv.2510.09653
https://doi.org/10.30871/jaic.v9i6.11484
https://doi.org/10.1038/s41598-024-65272-1
https://doi.org/10.1109/IJCNN.2018.8489629
https://doi.org/10.32736/sisfokom.v14i4.2524
https://doi.org/10.48550/arXiv.2512.13834
https://doi.org/10.1007/s11042-022-12023-x
https://doi.org/10.48550/arXiv.2407.12040
https://doi.org/10.1038/s41598-025-28737-5
https://doi.org/10.48550/arXiv.2411.00201
https://doi.org/10.48550/arXiv.2501.02270

