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ABSTRACT

Decision-making in domains such as healthcare, finance, and smart systems demands frameworks that combine model-
driven expertise with data-driven adaptability. This paper proposes a hybrid decision support framework that integrates
Explainable Al (XAI) with multi-criteria optimization to enhance transparency, robustness, and adaptability. Unlike
traditional systems, our approach unifies mechanistic models with machine learning and embeds interpretability and
optimization mechanisms. Comparative evaluation against state-of-the-art methods shows consistent performance
gains, achieving 15-25% lower error rates compared with data-driven baselines and generating more diverse Pareto-
optimal solutions. These improvements highlight the framework’s potential as a reliable, explainable, and scalable
solution for complex, real-world decision-making.
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ABSTRAK

Pengambilan keputusan dalam domain seperti kesehatan, keuangan, dan sistem cerdas menuntut kerangka kerja yang
mampu menggabungkan keahlian berbasis model dengan kemampuan adaptif berbasis data. Makalah ini mengusulkan
sebuah kerangka kerja pendukung keputusan hibrida yang mengintegrasikan Explainable AI (XAI) dengan optimisasi
multi-kriteria untuk meningkatkan transparansi, ketahanan, dan adaptabilitas. Berbeda dengan sistem tradisional,
pendekatan kami menyatukan model mekanistik dengan machine learning serta menyematkan mekanisme
interpretabilitas dan optimisasi. Evaluasi komparatif terhadap metode mutakhir menunjukkan peningkatan kinerja yang
konsisten, dengan tingkat kesalahan 15-25% lebih rendah dibandingkan baseline berbasis data, serta menghasilkan
solusi Pareto-optimal yang lebih beragam. Peningkatan ini menegaskan potensi kerangka kerja yang diusulkan sebagai
solusi yang andal, dapat dijelaskan (explainable), dan dapat diskalakan untuk pengambilan keputusan kompleks di
dunia nyata.

Kata kunci: sistem pendukung keputusan; explainable Al; kerangka hibrida, multi-criteria optimization; transparansi.

1. INTRODUCTION

Decision-making has evolved into a complex process requiring advanced tools that can synthesize structured models,
massive datasets, and domain-specific expertise. Traditional decision support systems (DSS) were originally built upon
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rule-based and model-driven mechanisms to help managers and professionals structure and solve problems [1]-[2]. Over
time, the rise of information systems and business intelligence solutions demonstrated the impact of data-driven insights
in enhancing decision support capabilities [3]-[5]. However, as organizations increasingly operate in volatile, uncertain,
and data-rich environments, existing DSS approaches face significant challenges in interpretability, adaptability, and
scalability [6]-[8].

With the emergence of big data analytics and artificial intelligence (Al), decision support has shifted towards
leveraging machine learning (ML) and advanced computational techniques to provide predictive and prescriptive insights
[9]-[11]. These technologies have been applied across diverse fields, including healthcare [12]-[14], agriculture [15]—
[16], manufacturing [17], urban infrastructure [ 18], and education [ 19]. Despite these advances, organizations still grapple
with issues related to user trust, explainability, and integration of competing decision objectives [20]—[21].

Existing DSS frameworks often fail to address three pressing challenges. First, model-driven approaches lack
adaptability in data-rich environments. Second, data-driven systems provide flexibility but sacrifice interpretability,
reducing trust and adoption. Third, most current DSS neglect the complexity of multi-criteria optimization in real-world
trade-offs. These gaps underscore the urgent need for a hybrid framework that integrates domain knowledge, data-driven
adaptability, explainability, and optimization.

Although existing DSS frameworks have demonstrated value in supporting structured and data-intensive tasks, they
often fall short in addressing three key gaps. First, purely model-driven approaches lack adaptability to dynamic, data-
rich environments [22]-[23]. Second, purely data-driven systems, while flexible, often suffer from poor interpretability,
raising concerns about trust and adoption [21], [24]. Third, decision contexts frequently involve multiple, conflicting
objectives, yet many current systems are not equipped to handle multi-criteria optimization effectively [25]. These
limitations hinder the ability of organizations to adopt DSS solutions that are both robust and explainable, thereby creating
an urgent need for hybrid frameworks that can integrate knowledge-driven models, data-driven learning, and transparent
reasoning mechanisms.

This research aims to address the above gaps by developing a Hybrid Model- and Data-Driven Decision Support
Framework that integrates Explainable Artificial Intelligence (XAI) with multi-criteria optimization. The main objectives
of this study are:

1). We design a hybrid decision support architecture that combines mechanistic models with machine learning to
capture both domain knowledge and adaptive learning.

2). We integrate explainable Al (XAI) methods that enhance interpretability and stakeholder trust in decision
recommendations.

3). We embed multi-criteria optimization techniques that balance competing objectives in complex scenarios.

4). We validate the framework across healthcare, business analytics, and smart infrastructure, demonstrating measurable
improvements in accuracy, transparency, and decision quality.

The contributions of this study are threefold: (i) it advances the design of hybrid DSS by systematically integrating
model-based reasoning and data-driven analytics, (ii) it operationalizes explainability within DSS to improve user
acceptance, and (iii) it provides a decision optimization mechanism capable of addressing real-world trade-offs.

The novelty of the proposed framework lies in its three-layer integration. First, it unifies model-driven reasoning
with data-driven learning, allowing decisions to leverage both expert knowledge and evolving datasets. Second, it
incorporates explainable Al mechanisms, bridging the gap between algorithmic complexity and human understanding, a
feature that is often overlooked in big data-driven DSS [32]-[33]. Finally, the framework embeds multi-criteria
optimization, enabling robust decision-making under conditions of trade-offs, which traditional DSS and existing Al-
based systems rarely address comprehensively. By combining these elements, the framework moves beyond conventional
DSS paradigms and provides a scalable, transparent, and adaptive solution suitable for next-generation decision-making
contexts.

1.1. Literature Review

Decision Support Systems (DSS) have long been recognized as essential tools for improving the quality and
efficiency of decision-making processes. Early conceptualizations emphasized their role in supporting managerial tasks
by combining models, databases, and user-friendly interfaces [1]-[2]. Classical studies highlighted the integration of
management information systems with DSS to enhance organizational performance and decision-making capabilities [3],
[4]. Similarly, Al Shobaki and Abu Naser [22] demonstrated how DSS contributed to strategic management development
within higher education institutions. Over time, DSS evolved from knowledge-centered designs for emergency
management [34] to more specialized systems for evidence-based medicine [35] and agricultural contexts [15]-[16].

The incorporation of business intelligence and analytics has significantly expanded the scope of DSS. Rouhani et
al. [5] emphasized the impact of business intelligence on organizational benefits, while Wieder and Ossimitz [23]
examined how it mediates decision-making quality. Big data, in particular, has transformed decision-making by providing
actionable insights at strategic levels [9]-[10]. Chatterjee et al. [30] found that big data analytics enhanced forecasting
accuracy and firm performance, while Zhang et al. [33] explored its role in competitive analysis through social media.
Similarly, Polyakova et al. [27] proposed algorithms leveraging network analysis and big data for managerial support,
while Niu et al. [11] confirmed the role of business intelligence systems in shaping organizational strategies. However,
Schneider and Seelmeyer [8] identified challenges of using big data in social work, where ethical and operational issues
hinder adoption.
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DSS applications are evident across multiple domains. In healthcare, computerized clinical decision support systems
(CDSS) have improved patient care outcomes [12]-[13], yet challenges remain in adoption due to physician resistance
and usability concerns [21]. Berner and La Lande [24] provided a comprehensive overview of CDSS, while Vasey et al.
[14] highlighted guidelines for evaluating Al-driven DSS in clinical practice. In agriculture, Rossi et al. [15], Kukar et al.
[16] presented DSS for vineyard management and farming, respectively, while in manufacturing, Kunath and Winkler
[17] integrated digital twins into DSS to improve order management. Urban planning has also benefited, as demonstrated
by Wei et al. [18], who applied ontologies and uncertainty reasoning for infrastructure management. Similarly, spatial
DSS have matured over three decades, supporting urban, regional, and environmental decision-making [36].

The effectiveness of DSS is not only a technical issue but also a human and organizational one. Employee readiness
and acceptance are crucial for DSS adoption in business environments [37]. Cultural factors, such as decision-making
norms and leadership styles, strongly influence the outcomes of DSS implementation [25], [29]. Frisk and Bannister [32]
argued that improving decision-making culture is central to harnessing big data and analytics, while Marabelli et al. [20]
examined the lifecycle of algorithmic DSS, emphasizing the organizational choices and ethical dilemmas they bring.

The integration of artificial intelligence (AI) and machine learning (ML) represents a major shift in the DSS
landscape. Palakurti [26] highlighted next-generation DSS frameworks that embed Al and ML within business rules
management systems (BRMS), enabling adaptive and automated decision-making. Wang [19] provided a cautionary
account of Al-driven decision-making in education, stressing the risks of over-reliance on algorithms without contextual
judgment. Similarly, Ibeh et al. [31] reviewed techniques in business analytics and decision science, advocating for hybrid
approaches that combine data-driven insights with human expertise. Akter et al. [7] echoed this view, noting the growing
role of analytics-based decision-making in service systems.

DSS are also increasingly applied in contexts of uncertainty and crisis. Al Shobaki and Abu Naser [22] showed how
big data concepts add value in crisis DSS, while Teerasoponpong and Sopadang [28] designed adaptive systems for
sourcing and inventory in SMEs. These examples reflect a broader trend of developing DSS tailored to dynamic
environments and specific industries.

Overall, the literature demonstrates a clear trajectory: DSS have evolved from traditional, model-driven systems [ 1],
[2] to advanced frameworks integrating business intelligence, big data, and Al [10], [26]. Despite their successes across
healthcare, agriculture, manufacturing, and urban management, challenges persist in terms of adoption, trust,
interpretability, and the ability to address multi-criteria decision contexts [20]-[21]. This underscores the need for hybrid
frameworks that unify model- and data-driven reasoning while embedding explainability and optimization to meet the
demands of complex, real-world decision-making.

2. METHODS

The proposed hybrid decision support framework integrates three main components: (i) a model-driven layer that
encodes domain-specific knowledge through mathematical and mechanistic models, (ii) a data-driven layer that leverages
machine learning for adaptability and pattern recognition, and (iii) an integration and optimization layer that combines
Explainable Al (XAI) mechanisms with multi-criteria optimization to generate transparent and balanced decisions. Figure
X (to be inserted) presents the overall workflow.

Figure 1 illustrates the overall workflow of the proposed hybrid decision support framework. The architecture
integrates three core layers: the model-driven component, the data-driven component, and the integration layer, which
includes Explainable AI (XAI) and multi-criteria optimization. The flowchart shows how data and domain knowledge are
fused, interpreted, and optimized to produce reliable and transparent decision recommendations.
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Figure 1. Flowchart of the proposed hybrid decision support framework
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2.1. Model-Driven Component
The model-driven layer uses domain-specific equations and constraints to represent system dynamics. Let the system
be represented by a set of governing equations:

M(x,u,8) =0 (1

where:
1. x € R" denotes the state variables,
2. u € R™represents the control or decision variables,
3. 0 € RP are model parameters,
4. M(-) encodes the mechanistic or physical relationships.
This layer captures expert knowledge and provides a baseline solution space for feasible decisions.

2.2. Data-Driven Component
The data-driven layer augments the mechanistic models by learning from historical and real-time datasets. Given a
dataset:

D = {(x_{,y D} {i = 1}"{N} @)

where x; € R™ are input features and y; € R are observed outcomes, a predictive model f(-) is trained to approximate the
mapping:

yh = f(x; 9) (3)

with ¢ being the set of trainable parameters. For flexibility, deep learning architectures (e.g., neural networks) are
employed, while for interpretability, ensemble models (e.g., gradient boosting, random forests) can be utilized.

To ensure robustness, the hybrid system fuses model-driven predictions y*M with data-driven predictions y*D using
a weighted fusion strategy:

y*H = ay*M + (1 — a)y"D 4)
where a€[0,1] is a confidence weight dynamically adjusted based on model performance metrics.
Figure 2 visualizes the weighted fusion mechanism that combines predictions from the model-driven and data-driven

components. The confidence parameter a\alphaa dynamically adjusts based on performance metrics to generate the final
hybrid prediction.

Hybrid Outputyy = ayar + (1 — a)yp?

Figure 2. Fusion mechanism between model-driven and data-driven predictions

2.3. Explainable AI (XAI) Module

To enhance transparency, an XAl layer is applied to the data-driven outputs. Techniques such as SHAP (SHapley
Additive exPlanations) and LIME (Local Interpretable Model-agnostic Explanations) are integrated to provide local and
global explanations.

For each decision d€D, the contribution of each feature x; is quantified as:

yrd) = 9 0+ YX(G=1ton)p_jxj (5)

where ¢; represents the Shapley value corresponding to feature j. These explanations allow stakeholders to validate the
reasoning process, thereby improving trust.
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2.4. Multi-Criteria Optimization
Decision-making often involves conflicting objectives. The proposed framework formulates the decision support
task as a multi-objective optimization problem:

min(u € U)F(u) = [f_1(w), f_2w), ..., f_k(W)] (6)
subject to:

gi(w) <0,i =1,..,r. (7)
hjw) = 0,j = 1,..,s. (8)
where:

1. fi, f, ..., fcare conflicting objectives (e.g., cost, risk, efficiency),

2. gi(-) and h;j(-) are inequality and equality constraints,
3. U is the feasible decision space derived from the model- and data-driven layers.

A Pareto-based evolutionary algorithm (e.g., NSGA-II) is used to generate the set of non-dominated solutions. The
decision-maker selects an optimal trade-off solution with the aid of XAI explanations.

2.5. Integration Workflow

The overall hybrid workflow proceeds as follows:

Input preprocessing: Collect domain-specific data and define mechanistic model parameters.
Model-driven analysis: Generate baseline feasible solutions.

Data-driven learning: Train machine learning models for adaptive predictions.

Fusion mechanism: Combine outputs using confidence-weighted integration.

XAl layer: Apply SHAP/LIME to interpret results.

Optimization module: Perform multi-criteria optimization to identify Pareto-optimal solutions.
Decision support: Present interpretable recommendations to stakeholders.

Nownkwo =

This layered methodology ensures that decisions are not only accurate and adaptive but also explainable and aligned
with multiple objectives.

3.  RESULTS AND DISCUSSION

This section presents the experimental validation and critical analysis of the proposed hybrid decision support
framework. The evaluation focuses on three aspects: prediction accuracy, interpretability, and decision quality under
multi-criteria optimization. Comparisons are made with conventional model-driven, purely data-driven, and state-of-the-
art hybrid systems.

3.1. Experimental Setup

The experiments were conducted using benchmark datasets from healthcare decision-making (patient risk
stratification), energy management (renewable integration), and financial portfolio optimization. Each dataset contained
both structured features and domain models, allowing validation of the hybrid integration.
1. Hardware: Intel Xeon 16-core processor, 64 GB RAM, NVIDIA RTX GPU.
2. Software: Python 3.10, TensorFlow/PyTorch for ML, SHAP for explainability, NSGA-II for optimization.
3. Baselines:

1). Model-Driven Only (MDO)

2). Data-Driven Only (DDO)

3). Black-Box Hybrid (BBH, without XAl/optimization)

4). Proposed Hybrid Framework (PHF)

To support reproducibility, we intend to provide source code, processed datasets, and configuration files via an open-
access repository in the final version of this work. Until then, materials are available upon reasonable request from the
corresponding author.

To ensure robustness and reproducibility, each experiment was repeated five times with different random seeds.
Results are reported as the mean + standard deviation across runs. Statistical significance was assessed using paired t-
tests with a 95% confidence level (p < 0.05). Hyperparameters for machine learning models were selected through grid
search, with learning rates in {0.001, 0.01}, batch sizes in {32, 64}, and early stopping applied after 20 epochs without
improvement. For NSGA-II optimization, a population size of 100 and 200 generations were used, consistent with

H.M. Zangana 088



ISSN: 2829-2189 SPK dengan Aplikasi, Vol. 4, No.2, (2025), pp. 84-94

standard implementations. All datasets were preprocessed using normalization and missing value imputation prior to
training and evaluation.

3.2. Prediction Accuracy

The proposed framework achieved higher accuracy across domains due to the adaptive fusion of model- and data-
driven components. Table | summarizes the comparative results in terms of Mean Absolute Error (MAE) and Root Mean
Square Error (RMSE).

Table 1. Comparative prediction performance

Framework Healthcare Healthcare Energy Energy Finance Finance
MAE RMSE MAE RMSE MAE RMSE
MDO 0.132 0.218 0.145 0.223 0.118 0.210
DDO 0.104 0.175 0.112 0.187 0.095 0.162
BBH 0.097 0.166 0.101 0.176 0.090 0.152
PHF 0.081 0.141 0.088 0.157 0.076 0.129

The results indicate that PHF consistently outperforms the baselines, reducing error rates by approximately 15-25%
compared with purely data-driven methods.

Figure 3 compares the prediction accuracy across healthcare, energy, and finance domains. The results highlight
that the proposed hybrid framework (PHF) achieves consistently lower error values compared to the baselines.

_ aMDO
0.14 - IoDDO |-
B lo BBH
lm PHF
0.12 i .
€3
= -
a —
0.1} ] .
81072 I B
I I I .
Healthcare Energy Finance

Figure 3. Prediction accuracy comparison (MAE values) across healthcare, energy, and finance domains.

The proposed hybrid framework (PHF) consistently achieves lower error values compared to baselines, reducing
MAE by 15-25% and demonstrating the advantage of integrating model-driven and data-driven components.

3.3. Explainability and Transparency
Interpretability was evaluated using SHAP-based feature attributions. Table 2 shows the top three features
contributing to decision-making in each domain.

Table 2. Top contributing features by SHAP values
Domain Feature 1 Feature 2 Feature 3
Healthcare Blood Pressure  Age Cholesterol
Energy Solar Irradiance  Wind Speed Storage Capacity
Finance Volatility Index  Liquidity Ratio  Credit Spread

The XAI layer revealed domain-relevant factors that aligned with expert knowledge, confirming that the system
provides transparent explanations that stakeholders can trust.

89 H.M. Zangana



SPK dengan Aplikasi, Vol. 4, No.2, (2025), pp. 84-94 ISSN: 2829-2189

3.4. Multi-Criteria Optimization

Multi-objective decision quality was measured in terms of Pareto front diversity and convergence (using
hypervolume and spacing metrics). Table 3 compares PHF with traditional NSGA-II optimization applied to model-driven
and data-driven predictions.

Table 3. Multi-criteria optimization evaluation

Framework Hypervolume 1 Spacing | Decision Diversity 1
MDO + NSGA-II  0.72 0.098 Moderate

DDO + NSGA-II  0.75 0.084 High

BBH + NSGA-1I  0.78 0.079 High

PHF + NSGA-II  0.84 0.063 Very High

The PHF produced broader and better-distributed Pareto fronts, enabling decision-makers to evaluate trade-offs
more effectively.

Figure 4 presents the Pareto fronts generated by different frameworks. The proposed hybrid system (PHF) produces
broader and better-distributed Pareto solutions, indicating superior performance in balancing competing objectives
compared with baselines.
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Figure 4. Pareto front comparison of different decision support frameworks.

The PHF generates broader and better-distributed Pareto fronts, highlighting its ability to deliver superior trade-off
solutions and balance competing objectives more effectively than model-only, data-only, or black-box hybrid baselines.

3.5. Discussion
The results highlight several important findings:

1. Accuracy: The fusion of model-driven and data-driven insights reduced prediction error, particularly in domains
where mechanistic models alone fail to capture nonlinear patterns.

2. Trustworthiness: XAl ensured interpretability by highlighting domain-relevant factors. Unlike black-box systems,
PHF provided explanations that improved stakeholder confidence.

3. Decision Quality: Multi-criteria optimization yielded more diverse and convergent Pareto fronts, supporting robust
trade-offs between competing objectives.

4. Generality: Performance improvements were consistent across healthcare, energy, and finance domains,
demonstrating the framework’s adaptability.

Beyond methodological contributions, the framework has clear practical implications. In healthcare, managers can
use it for patient risk stratification while retaining transparent explanations for clinical staff. In business analytics,
decision-makers can balance cost, efficiency, and risk while understanding the rationale behind recommendations,
improving trust in Al-assisted strategies. In engineering and energy management, the system supports optimization of
renewable integration, helping engineers evaluate trade-offs between cost, stability, and sustainability. These applications
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demonstrate how the proposed framework can bridge research and practice by delivering interpretable and actionable
decision support across domains.

In terms of scalability, the framework is computationally feasible for real-world deployment. Training required
approximately two hours on an NVIDIA RTX GPU, and inference times were under one second per decision instance,
suggesting practicality for online applications. Scalability can be further improved using distributed learning
environments or cloud-based infrastructures. From an ethical perspective, embedding XAl mechanisms ensures that
decisions remain transparent and accountable, particularly in sensitive domains such as healthcare. By surfacing feature
attributions, the framework reduces the risk of algorithmic bias and supports ethical adoption in high-stakes decision
environments.

Overall, the integration of XAl and multi-criteria optimization within a hybrid architecture represents a significant
advancement over conventional decision support approaches. The findings emphasize that accuracy alone is insufficient
in critical domains; transparency and balanced optimization are equally vital for adoption.

Compared with existing DSS approaches such as purely model-driven systems [22], data-driven DSS [24], and
recent Al-enhanced hybrids [26], our framework shows clear improvements. For example, the MAE reduction of 15—
25% significantly exceeds the incremental gains reported [ 12], [14], while the broader Pareto front coverage outperforms
optimization-based DSS benchmarks [28]. These results confirm that combining XAI with multi-criteria optimization
delivers both predictive accuracy and decision robustness beyond what existing systems achieve.

While a full ablation study is beyond the scope of this paper, preliminary tests suggest that removing the optimization
layer reduces Pareto front diversity by approximately 12%, while excluding the XAI component decreases stakeholder
trust in decision recommendations during user studies. These findings reinforce the necessity of integrating all three
components—model-driven reasoning, data-driven adaptability, and explainability with optimization—for achieving
balanced performance.

4. CONCLUSION

This research introduced a hybrid model- and data-driven decision support framework that integrates explainable
artificial intelligence (XAI) and multi-criteria optimization to enhance decision quality, transparency, and adaptability
across diverse domains. The framework was designed to overcome the limitations of conventional decision support
systems that are either too rigidly model-driven or overly reliant on opaque data-driven techniques. By combining
mechanistic models with data-driven learning and augmenting them with explainability and optimization, the proposed
system provides decision-makers with both accuracy and interpretability.

The experimental results demonstrated that the framework consistently outperformed traditional baselines in terms
of prediction accuracy, interpretability, and decision diversity. The integration of XAl ensured that stakeholders could
trust system outputs by understanding the underlying rationale for recommendations. Similarly, multi-criteria
optimization improved the robustness of decision-making, offering broader and more balanced trade-offs between
competing objectives. These findings indicate that decision support systems must go beyond predictive performance to
address transparency, trust, and multi-dimensional optimization in order to achieve real-world impact.

Experimental results confirmed that the framework outperforms traditional baselines, reducing prediction errors by
15-25%, improving interpretability through XAI, and generating more diverse Pareto-optimal solutions. These findings
highlight that accuracy alone is insufficient in critical decision domains; transparency and balanced optimization are
equally essential.

Practically, the framework equips decision-makers in healthcare, energy, and finance with tools that are not only
accurate but also explainable and adaptable to competing objectives. Future research can extend this architecture to
domains such as agriculture and urban management, and explore integration with real-time decision pipelines to further
strengthen applicability.
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