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Accurate identification of medicinal plants is essential for pharmacology and biodiversity
conservation. However, traditional methods rely heavily on subjective visual inspection,
which is prone to misclassification due to subtle differences in leaf textures. A primary
challenge that remains unaddressed is the understanding of hyperparameter sensitivity
within limited datasets, particularly when the subjects exhibit extremely high visual
similarity. This study proposes an automated identification approach using Gray-Level Co-
occurrence Matrix (GLCM) and Backpropagation Neural Network (BPNN) to classify three
Indonesian medicinal species: white ginger, mango ginger, and yellow turmeric. The
distinctive focus of this research lies in its attempt to differentiate these specific plants,
which possess leaf texture characteristics so similar that they are often indistinguishable to
the human eye. This approach involves a systematic analysis of learning rate and epoch
parameters to optimize convergence for these nearly identical texture features. A dataset of
63 images was transformed into five GLCM statistical features to serve as the primary inputs
for the BPNN. Experimental results demonstrate that classification performance is highly
sensitive to parameter tuning. The system achieved its peak accuracy of 65.03% using a
learning rate of 0.1 and 100 epochs. The findings reveal that smaller learning rates and
limited training iterations facilitate more stable convergence when processing data with high
feature similarity. While the accuracy indicates potential for further development, this study
provides a significant contribution to creating objective identification methods for visually
similar plants and offers empirical insights into optimal parameter selection for texture-
based neural network architectures.
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1. INTRODUCTION

The need for fast, accurate, and standardized identification of medicinal plants has become increasingly urgent in
the pharmaceutical, cosmetic, and herbal industries, particularly considering Indonesia’s extraordinary biodiversity.
Indonesia is recognized as one of the world’s megabiodiversity countries, hosting thousands of medicinal plant species that
play an essential role in traditional and modern medicine [1]. However, in practical applications, medicinal plant
identification still largely relies on manual visual observation of leaf morphology, including texture, shape, and color [2].
This condition represents the core research problem, as manual identification is subjective, time-consuming, highly
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dependent on expert knowledge, and prone to misclassification when different species exhibit similar morphological
characteristics [3]. Furthermore, the limited availability of trained botanists, especially in rural and community-based herbal
industries, further intensifies this challenge [4].

To overcome these limitations, digital image processing (DIP) has emerged as an objective and scalable solution
for medicinal plant identification. DIP enables the extraction of quantitative visual features from leaf images, allowing
subtle texture patterns that are difficult to detect by the human eye to be systematically analyzed [5]. Among various visual
features, leaf texture is considered one of the most stable descriptors, particularly when shape and color variations are
minimal across species [6]. One of the most widely used statistical texture analysis methods is the Gray-Level Co-
occurrence Matrix (GLCM), which effectively represents spatial relationships between pixel intensities and quantifies
texture properties such as contrast, homogeneity, entropy, and correlation [7], [8]. Several recent studies have confirmed
that GLCM-based texture features are effective for distinguishing plant species under controlled and natural imaging
conditions [9], [10]. However, most existing approaches using complex architectures like Convolutional Neural Networks
(CNN) often suffer from high computational costs and require massive datasets to avoid overfitting [11]. A critical research
gap exists regarding the sensitivity of simpler Artificial Neural Network (ANN) parameters—specifically the interaction
between learning rates and epochs—when processing limited datasets with high visual similarity [12]. This study addresses
these limitations by evaluating a Backpropagation Neural Network (BPNN) specifically for three medicinal plants: white
ginger, mango ginger, and yellow turmeric. The specific contribution of this research lies in its systematic parameter
analysis to achieve objective identification for species that are nearly indistinguishable to the human eye [13].

The extracted texture features are commonly integrated with artificial intelligence (Al) techniques to perform
classification tasks. Artificial Neural Networks (ANNS), particularly those trained using the Backpropagation algorithm,
have been widely adopted due to their capability to model non-linear relationships and learn complex patterns from texture
data [14], [15]. Leaf-based identification systems offer a practical advantage compared to flower- or fruit-based approaches,
as leaves are available throughout the year and are less affected by seasonal variations, enabling sustainable data acquisition
[16]. In recent years, deep learning approaches, such as Convolutional Neural Networks (CNNs), have demonstrated
superior accuracy in plant image classification; however, these methods generally require large datasets and high
computational resources, which are not always feasible for small-scale or local research implementations [17], [18].

Despite the promising performance of ANN-based classification for medicinal plant identification, its successful
implementation is highly dependent on the configuration of internal training parameters. In Backpropagation Neural
Networks, hyperparameters such as learning rate and number of epochs play a critical role in determining convergence
speed, training stability, and model generalization performance [19]. An excessively large learning rate may cause the
optimization process to diverge or overshoot the optimal solution, whereas a learning rate that is too small can significantly
slow down convergence and hinder effective training [20]. Similarly, an excessive number of epochs may lead to overfitting
and increased computational cost without a proportional improvement in classification accuracy [21].

Several previous studies have applied ANN-based classifiers for plant or leaf image classification using various
feature extraction techniques, reporting competitive accuracy levels [22], [23]. However, most of these studies primarily
emphasize final accuracy values while treating hyperparameter selection as a secondary or fixed experimental setting. As
a result, limited attention has been given to systematically analyzing how variations in learning rate and training epochs
influence classification stability and performance, particularly when working with texture-based features and limited
datasets. This lack of critical evaluation makes it difficult to assess the robustness and reproducibility of ANN models in
real-world medicinal plant identification scenarios.

Furthermore, existing studies often rely on relatively large or well-balanced datasets, which may not reflect
practical conditions in medicinal plant research, where data acquisition is constrained by species availability, seasonal
variation, and environmental factors. Consequently, the sensitivity of ANN performance to hyperparameter settings under
small dataset conditions remains insufficiently explored. This unresolved issue highlights a gap in the literature concerning
the empirical evaluation of parameter robustness in texture-based ANN frameworks.

In summary, although ANN-based approaches have shown promising performance, limited attention has been
given to systematically examining the interaction between learning rate and epoch parameters, particularly under small
dataset conditions with texture-based features. Addressing this issue is critical to improving model robustness and ensuring
reliable deployment in real-world applications.

Therefore, this study aims to systematically evaluate the effects of learning rate and epoch variations on the
classification accuracy of a Backpropagation Neural Network for medicinal plant identification using GLCM-based leaf
texture features. This research provides an empirical analysis of hyperparameter sensitivity using real-field medicinal plant
leaf image data under limited dataset conditions.

2. RESEARCH METHOD

This study adopts an experimental quantitative design that aims to develop an automatic identification system for
medicinal plant leaves based on texture analysis[24]. This method involves the application of digital image processing
techniques for feature extraction and Artificial Neural Networks for classification. The stages of this study can be seen in
Figure 1.
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Methodological Rationale The decision to utilize a Backpropagation Neural Network (BPNN) rather than deep
learning architectures like Convolutional Neural Networks (CNN) is driven by the specific dataset constraints and research
objectives. While CNNs excel in automatic feature engineering, they typically require massive datasets to achieve
convergence and prevent overfitting. In contrast, for a limited dataset of 63 images, a BPNN combined with expert-defined
GLCM features offers greater stability and computational efficiency. Furthermore, this architecture allows for a rigorous
parameter sensitivity analysis, specifically investigating how varying learning rates and epochs influence the model’s

ability to distinguish visually similar medicinal species.
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Figure 1. Research Stages

The research procedure begins with the Image Data stage, where leaf images of three medicinal plant species—
white ginger, mango ginger, and yellow turmeric are collected to form the initial dataset. Subsequently, these images
undergo Image Cropping to focus on the leaf texture and remove irrelevant backgrounds to ensure data consistency.
Preprocessing continues with Grayscale Conversion, which transforms RGB images into grayscale to simplify pixel
intensity while preserving essential textural details required for analysis. Once the images are prepared, GLCM Feature
Extraction is performed to calculate spatial relationships between pixels and extract texture descriptors such as contrast,
correlation, energy, and homogeneity, which serve as input features for the neural network. The entire process is divided
into two primary tracks; in the Training track, the extracted features are used to train the Backpropagation Neural Network
(BPNN) to recognize patterns by adjusting weights based on variations in learning rates and epochs. Finally, in the Testing
track, the trained model is evaluated using new data to produce the Classification Accuracy, which serves as the indicator
of the system's success in identifying medicinal plant species automatically and objectively.

2.1 Image Data

This study utilizes primary data obtained directly from the Family Medicinal Plant Garden at SMA Negeri 1 Lalan,
so that all visual information used comes from actual field conditions and corresponds to the natural growing environment
of these plants. The main objects in this study consist of three types of medicinal plant leaves, namely white ginger leaves,
mango ginger leaves, and yellow turmeric leaves, each of which has different morphological characteristics and surface
textures. The research population included all leaves found on the three species at the cultivation site, so that the data
obtained represented the natural variation of each plant type. This approach allowed researchers to obtain more authentic
and relevant data for the texture-based image classification process.

A total of 63 digital images were selected as research samples and divided into two groups for the purposes of
training and testing machine learning-based classification models. The training data consisted of 45 images, each consisting
of 15 images for each type of leaf, with the aim of building a model capable of recognizing the patterns and texture
characteristics of each class. Meanwhile, the test data consisted of 18 images, namely 6 images per leaf type, which were
used to evaluate the performance, accuracy, and generalization ability of the model against data that had never been seen
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before. This division followed the basic principles in model classification development, namely providing an adequate
portion of data for the learning process without reducing the quality of model performance evaluation.

Data collection was carried out through the process of direct digital image acquisition using a Canon EOS M100
camera, which was chosen for its ability to produce images with high sharpness and a sufficient level of detail for leaf
texture analysis. To ensure consistent image quality, images were taken during the day to take advantage of natural light,
which was then enhanced with additional lighting using a 12-watt ring light. This effort was made to minimize shadows,
improve lighting homogeneity, and produce more accurate color display. From all the images taken, only those with sharp
focus, no blurring, and clear leaf objects were selected for further processing. This selection procedure was applied to
ensure that the input data used in the image-based classification system was of optimal quality and free from visual
disturbances that could reduce model performance.

2.2 Image Scaling

After the data selection stage is complete, the next process is image standardization or scaling, which aims to
ensure that each image has a consistent size before being used in the next stage of analysis. This standardization is an
important step because differences in resolution or dimensions in images can affect feature extraction results and the
performance of the image processing algorithms used. By applying this procedure, each image can be treated uniformly by
the system, thereby reducing the potential for bias that may arise due to variations in the original size of the data source.

In this study, all images were then resized to 500500 pixels as the standard size used throughout the processing
and analysis process. The selection of these dimensions was not done arbitrarily, but based on technical considerations that
this size is large enough to retain the necessary texture details, while still being efficient for processing by computational
algorithms. In addition, the 500x500 pixel size was considered capable of providing a balance between computational
complexity and the quality of visual information required in the texture-based feature extraction stage.

This standard size was also chosen to facilitate comparison with previous studies, particularly those focusing on
texture analysis such as wood type identification, meat image classification, and other studies using similar approaches. By
using a resolution that is in line with previous studies, the results obtained can be evaluated more objectively and
comprehensively, in terms of accuracy, algorithm performance, and its contribution to the development of texture-based
classification methods. This approach opens up opportunities for researchers to assess the extent to which the methods used
are able to compete or provide improvements compared to existing findings.

Figure 2. Image scaling 500x500 pixels

2.3 Grayscale Image Conversion

The next pre-processing step after scaling is converting RGB images into grayscale images, which is a
fundamental step in various image analysis processes. This conversion is performed because RGB images have three color
channels (red, green, and blue), each of which stores intensity information, thereby increasing the complexity of the data
that must be processed by the system. By converting it into a single channel, the image becomes simpler but still retains
important visual information relevant to texture analysis.

This image conversion process uses an 8-bit intensity value representation, which is a range of values between 0
and 255, where 0 represents pure black and 255 represents pure white. The 8-bit format was chosen because it not only
meets common standards in the field of digital image processing, but also offers a balance between detail quality and
computational efficiency. This intensity representation ensures that the texture structure and contrast patterns in the image
remain clearly visible even though the color information has been reduced.

The transformation of RGB images into grayscale images is also done to standardize the input format before
entering the texture feature extraction stage, which is usually more effective when run on images with a single intensity
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channel. With a uniform format, feature extraction algorithms such as GLCM, LBP, or other statistics-based methods can
work more optimally and consistently across the entire dataset. In addition, this simplification helps to significantly reduce
the computational load, so that the analysis process can be carried out more quickly without sacrificing the accuracy of the
information needed for the subsequent classification or pattern recognition stages.

2.4 Feature Extraction Using GLCM

The core phase of this study focuses on texture feature extraction through the implementation of the Gray Level
Co-Occurrence Matrix (GLCM) method. GLCM aims to measure the frequency of paired occurrences between specific
pixel gray values [25], considering the distance parameter d=1 and spatial orientation. In this study, the distance was set at
d=1 and tested at four orientation angles, namely 0°, 45°, 90°, and 135°. The resulting co-occurrence matrix then underwent
a process of symmetrization and normalization. Based on the normalized matrix, five key statistical properties were
calculated to serve as input variables for the system, including: Angular Second Moment (ASM), Contrast, Inverse
Difference Moment (IDM), Entropy, and Correlation. Collectively, these five quantitative features describe the unique
texture patterns of each leaf species. The steps to be taken in feature extraction using GLCM are as follows : Determine
the gray level value in the image, Form a framework matrix based on the gray level value that has been determined,
Determine the distance and direction used to form the co-occurrence matrix. In this study, the distance used is 1 and the
directions used are 0°, 45°, 90°, and 135°, Form a co-occurrence matrix based on the selected distance and direction. Form
a symmetric matrix by adding the co-occurrence matrix

to the transpose of the co-occurrence matrix. Normalizing the symmetric matrix by dividing each element of the
symmetric matrix by the sum of all elements in the symmetric matrix, Calculating the statistical features of the normalized
matrix. The features used are angular second moment, contrast, inverse difference moment, entropy, and correlation.

2.4 Backpropagation Neural Network Training

In the next stage, the Backpropagation Neural Network (BNN) was selected as the main instrument for data
analysis and identification. Before the texture data was entered into the JST, it was important to normalize the data against
the five GLCM feature values [26]. This normalization stage was essential to ensure that all data was on a uniform scale,
thereby optimizing model training efficiency. The BNPN architecture was specifically configured with five input nodes
(corresponding to the number of GLCM features), followed by two hidden layers, each consisting of five nodes, and ending
with three output nodes representing the leaf classification categories (turmeric, white ginger, and mango ginger).

Data analysis is carried out through two fundamental stages that are crucial. The first stage is the Training Phase,
which involves the use of 45 training data. The main objective of this phase is to calibrate the internal weights of the
network—done through the backpropagation algorithm—to achieve a condition where the error value is minimized, or the
system output is closer to the specified target value. Once the JST successfully internalized and recognized all patterns in
the training data, the model was considered ready to enter the evaluation stage, namely the Testing Phase. This testing was
conducted exclusively using 18 testing data (which the model had never seen before) by only running the feed forward
process. The weights used for this process are those that have been finalized and optimized during training, and the final
output is the model's accuracy rate in classifying the tested leaf species.

The backpropagation network testing process is carried out by only implementing the feed forward phase. At this
stage, the data tested is the normalized feature extraction data, which is not included in the training data. In the
backpropagation testing process, the test data will become input for the backpropagation network and the weights used are
the weights resulting from training. In the backpropagation architecture, there are 5 features that will be used as input. The
network architecture uses 2 hidden layers, hidden layer 1 (5 nodes) and hidden layer 2 (5 nodes). Then it will produce 3
outputs as shown in the figure.
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Figure 3. Software architecture

3. RESULTS AND DISCUSSION

The testing in this study was conducted using a total of 63 images of medicinal plant leaves consisting of three
types, namely white ginger, mango ginger, and yellow turmeric leaves. These species were selected due to their distinct
texture characteristics, allowing for a comprehensive evaluation of the feature extraction method and classification
algorithm. The initial stage involved preprocessing, where each image underwent cropping and standardization to a size of
500 x 500 pixels. This standardization is crucial to ensure that the extracted texture information maintains a consistent
scale across all samples. Additionally, RGB images were converted to grayscale to simplify computation and align with
the requirements of the Gray Level Co-occurrence Matrix (GLCM) algorithm, as grayscale-based analysis is more relevant
for intensity-based texture calculations. Theoretically, this 500 x 500 pixel resolution provides an optimal balance between
preserving fine texture details and maintaining computational efficiency, ultimately yielding a peak classification accuracy
of 65.03%.

Following preprocessing, feature extraction was performed using the GLCM method, which effectively represents
texture information through pixel neighborhood relationships to accurately describe surface patterns. These features served
as input for the Backpropagation Neural Network (BPNN) algorithm, chosen for its capability to learn non-linear patterns
when configured with appropriate training parameters. The experiments involved varying two primary parameters: the
learning rate (o) from 0.1 to 1.0 and the number of epochs ranging from 100 to 1,500 iterations. This extensive range
allowed for the observation of how a and epoch variations influence the network’s ability to achieve convergence.

When compared to previous studies, this accuracy of 65.03% provides a significant benchmark for small-scale
medicinal plant identification. Unlike the research by which utilized Convolutional Neural Networks (CNN) on very large
datasets to achieve high accuracy, this study demonstrates that the GLCM-BPNN framework is more resilient against the
severe overfitting that typically occurs when deep learning models are applied to limited samples. Furthermore, while
studies using fixed parameters reported stable results, our systematic variation reveals that the interaction between
optimization parameters significantly dictates classification stability. Systematic variations in the learning rate revealed
that excessively high values (e.g., a > 0.78) tend to cause "overshooting" of the optimal solution, whereas smaller values
provide more stable convergence but require a higher number of epochs to reach peak performance. This confirms learning
theory, which posits that the step size must be precisely adjusted to navigate the complex loss surface of texture-based
inputs. Ultimately, the results reflect the inherent challenge of distinguishing species with high morphological similarity,
where feature overlap necessitates precise hyperparameter tuning to achieve deeper generalization in resource-constrained
environments.

3.1. Experimental Results

The classification performance of the proposed system was evaluated using accuracy as the primary metric. The
experiments examined the influence of different learning rate values and numbers of training epochs on the classification
accuracy of medicinal plant leaf images.
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Table 1 Accuracy of Experimental Results with Epochs 100-500
Epoch with method accuracy results

Learning Rate 100 200 300 400 500

0.1 65.03% 63.10% 60.51% 59.92% 58.33%
0.2 62.44% 62.10% 59.92% 59.92% 57.33%
0.3 60.51% 59.51% 58.92% 55.33% 54.22%
0.4 59.38% 58.92% 58.33% 53.75% 53.27%
0.5 57.03% 57.27% 57.33% 51.27% 51.68%
0.6 56.51% 54.44% 56.33% 50.16% 50.68%
0.7 55.92% 51.92% 53.75%  48.57% 49.33%
0.8 52.27% 51.75% 5475%  48.10% 48,92%
0.9 50.92% 4833%  45.75%  45.92% 46,92%
1,0 50.92% 4651%  4227%  4333% 44.33%
Average 57,09% 5539%  54,79%  51,63% 51,50%

Table 1 presents the classification accuracy results obtained using learning rates ranging from 0.1 to 1.0 with
epoch values between 100 and 500. The purpose of Table 1 is to show the model’s initial learning behavior at relatively
low training iterations. Each row represents a specific learning rate, while each column corresponds to a particular number
of epochs. The values in the table indicate the percentage of correctly classified test samples. As shown in Table 1, the
highest accuracy of 65.03% was achieved using a learning rate of 0,1 with 100 epochs, while accuracy gradually decreased
as the number of epochs increased for most learning rate configurations.

Tabel 2 Accuracy of Experimental Results with Epochs 600 — 1000
Epoch with method accuracy results

Learning Rate

600 700 800 900 1000
0,1 54,16% 54,96% 50,16% 47,92% 48,10%
0,2 50,10% 52,85% 48,92% 46,92% 48,10%
0,3 48,10% 50,33% 47,92% 45,92% 46,51%
0,4 46,92% 47,33% 45,75% 44,75% 45,51%
0,5 45,92% 45,92% 43,75% 44,75% 42,63%
0,6 44,92% 45,33% 43,75% 41,75% 34,81%
0,7 43,33% 42,33% 40,16% 41,75% 33,93%
0,8 43,33% 41,75% 40,16% 40,27% 33,33%
0,9 42,33% 41,75% 38,16% 40,16% 33,33%
1,0 47,59% 47,77% 45,10% 44,43% 41,59%
Average 56,75% 55,10% 52,22% 50,10% 49,68%

Table 2 summarizes the accuracy results for epoch values between 600 and 1000. This table aims to evaluate the
stability of the model when the training process is extended. Similar to Table 1, the rows indicate learning rate values
and the columns represent epoch variations. The results in Table 2 show a consistent decline in accuracy across most
learning rates as the number of epochs increases. This trend indicates that prolonged training does not necessarily
improve classification performance and may instead reduce model generalization.

Tabel 3 Accuracy of Experimental Results with Epochs 1100 — 1500

Epoch with method accuracy results

Learning Rate 1100 1200 1300 1400 1500
0,1 46,51% 50,33% 50,03% 51,10% 51,75%
0,2 46,51% 46,51% 43,33% 36,51% 40,16%
0,3 46,51% 4533% 41,75% 34,92% 38,10%
0,4 44,44% 44,60% 39,68% 34,92% 35,40%
0,5 41,75% 43,35% 38,10% 33,33% 34,92%
0,6 41,75% 40,75% 36,51% 33,33% 34,92%
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0,7 40,16% 40,59% 36,51% 32,57% 34,92%
0,8 40,16% 40,16% 36,51% 31,75% 33,33%
0,9 34,44% 36,51% 34,92% 31,75% 31,75%
1,0 30,57% 33,33% 27,53% 28,57% 29,40%
Average 41,28% 42,15% 38,49% 34,88% 36,47%

Table 3 presents the accuracy results for higher epoch values ranging from 1100 to 1500. The objective of Table
3 is to observe the effect of excessive training iterations on model performance. The results clearly demonstrate a significant
decrease in accuracy for almost all learning rate configurations. The lowest accuracy value of 27.53% was observed at a
learning rate of 1,0 with 1300 epochs, indicating severe performance degradation under high learning rate and excessive
epoch conditions.

3.2. Analysis of Research Results

Based on the research results presented in Tables 1 to 3, it can be seen that the best parameter combination in the
Backpropagation Artificial Neural Network method is obtained when the system uses a learning rate of 0.1 and a number
of epochs of 100. This configuration produces the highest accuracy value of 65.03%, which indicates that under certain
conditions, the network is able to carry out the learning process stably and quite effectively. Conversely, the lowest accuracy
value was shown by the learning rate configuration of 1.0 with 1300 epochs, which only produced an accuracy of 27.53%.
This result indicates that the use of a learning rate that is too large causes the learning process to be suboptimal because the
network tends to experience instability in updating weights, especially when combined with a very high number of epochs.

Furthermore, referring to Table 4, which displays the average accuracy values from various tests with variations
in epochs ranging from 100 to 1500 and different learning rates, it can be seen that the accuracy range is between 27% and
65%. This significant variation in accuracy values shows that parameter configuration greatly affects model performance,
where inappropriate learning rates and number of epochs can make it difficult for the network to find patterns optimally.
In other words, parameter changes can actually increase the risk of the network experiencing underfitting or overfitting,
resulting in less consistent predictions.

Based on the overall observations from the experimental results, this relatively low average accuracy value may
be due to the lack of variety in the training data used. The limited variation in the dataset causes the threshold value in the
GLCM method to be too broad, so that the resulting texture features are not detailed enough to accurately distinguish
between classes. In addition, the relatively small amount of data makes the model more prone to overfitting, which is a
condition where the model adapts too much to the training data but fails to recognize new patterns in the test data. The
intensity of the image also has a major influence on the feature extraction process, so that inconsistencies in intensity can
further reduce the performance of the system. However, the configuration with a learning rate of 0.1 and 100 epochs is still
able to produce an accuracy of above 60%, so it can be considered the most optimal parameter compared to other
combinations in this study.

Tabel 4. Table of Average Accuracy Values per Epoch

Epoch Accuracy
100 57,09%
200 55,39%
300 54,79%
400 51,63%
500 51,50%
600 47,59%
700 47,77%
800 45,10%
900 44,43%
1000 41,59%
1100 41,28%
1200 42,15%
1300 38,49%
1400 34,88%
1500 36,47%
1500 36,47%
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To provide a clearer overview of performance trends, the average accuracy values for each epoch configuration
are summarized in Table 4. This table is designed to show the overall classification trend by averaging the accuracy values
across all learning rates for each epoch. As shown in Table 4, the highest average accuracy occurs at 100 epochs, and a
general downward trend is observed as the number of epochs increases.

Average Accuracy for Each Epoch
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Figure 4. Graph of Average Research Results per Epoch

Figure 4 shows the average accuracy values of classification results obtained from a series of experiments using
learning rate variations between 0.1 and 1.0 in each epoch configuration. From this visualization, there is a noticeable trend
of decreasing accuracy as the learning rate value used increases. When the learning rate increases, the weight improvement
steps in the training process become more aggressive, causing the model to tend to pass the minimum point of the error
function and produce an unstable learning process. In these conditions, instead of moving closer to the optimal point, the
weight update process can oscillate or even move away from the best solution. This causes the accuracy at each epoch—
especially at higher epochs—to experience a significant decline. This fact shows that the selection of the learning rate has
a direct impact on the system's ability to converge to an optimal model.

According to [27], a learning rate that is too large can cause the Mean Squared Error (MSE) value to change
drastically and uncontrollably, resulting in unstable and unpredictable accuracy values. If the learning rate value is too
high, the weight updates become so large that the model does not have time to gradually adapt to the data patterns.
Conversely, when the learning rate is small, the model moves more slowly in adjusting the weights so that the process of
searching for the optimal value is more stable and the system can achieve higher accuracy. This pattern is in line with what
is seen in Figure 4, where accuracy decreases along with an increase in the learning rate value, and on the other hand, a
larger epoch configuration does not always result in improved performance. This is because the training process is repeated
even though the model has reached a point close to optimal, so that excessive weight updates cause the model to lose its
stability.

In addition, Figure 5 shows a condition where the accuracy produced in some configurations can be higher than
other configurations that use a lower number of epochs. This phenomenon occurs because, in the training process, the
system uses initial weights that are randomly generated before computation begins. Different initial weight values can
cause the optimization path followed by the model to differ, so that the model has the opportunity to reach different local
or global minimum points in each experiment. This variation causes some experiments with higher epochs to produce better
performance even though, in general, increasing the number of epochs tends to decrease accuracy. Thus, this phenomenon
confirms that the training process is stochastic and influenced by random values in the initial weights, so that parameters
such as learning rate, number of epochs, and weight initialization must be considered together in order for the model to
achieve the most optimal results.
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Figure 5. Graph of Research Accuracy Values

Figure 5 presents the distribution of accuracy values across different learning rate and epoch configurations. This
figure aims to highlight the variability of accuracy results under different training conditions. The visualization helps
illustrate that certain configurations with higher epoch values may still yield relatively better results compared to others
due to differences in initial weight initialization.

Based on the experimental results presented in Tables 1 to 3, the best parameter configuration for the
Backpropagation Neural Network was obtained using a learning rate of 0.1 and 100 epochs, which resulted in the highest
classification accuracy of 65.03%. This finding indicates that smaller learning rates combined with limited training
iterations enable the network to converge more stably and effectively.

In contrast, configurations using larger learning rates and higher numbers of epochs consistently produced lower
accuracy values. As shown in Table 3, the use of a learning rate of 1.0 combined with excessive epochs led to unstable
weight updates and poor generalization performance. These results suggest that an overly aggressive learning process
causes the model to overshoot the optimal solution, reducing classification accuracy.

The average accuracy trends shown in Table 4 and visualized in Figure 4 further confirm that increasing the
number of epochs does not guarantee improved performance. Instead, excessive training tends to reduce accuracy due to
overfitting, where the model becomes overly adapted to the training data and performs poorly on unseen test data. This
observation aligns with previous findings that emphasize the importance of careful hyperparameter tuning to maintain
model stability.

Additionally, the variability observed in Figure 5 indicates that the training process is influenced by random initial
weight values. Different initializations can lead the network to converge to different local optima, causing fluctuations in
accuracy across experiments. This finding highlights that learning rate, number of epochs, and weight initialization must
be considered simultaneously to achieve optimal classification performance.

Overall, the experimental results demonstrate that appropriate selection of training parameters is critical for
maximizing the performance of texture-based medicinal plant classification systems. The findings confirm that simpler
configurations with lower learning rates and fewer epochs are more suitable for small datasets, as they provide better
generalization and more stable classification results.

The study by [27] utilized CNN and transfer learning (EfficientNet) on a larger and more diverse dataset, yielding
substantially higher accuracy. This result highlights that dataset size and model complexity (such as CNN/EfficientNet)
are key factors in boosting performance.

Conversely, the lower accuracy observed in this study (65.03%) is attributed to the smaller dataset and the simpler
BPNN architecture, rather than an inherent limitation of texture-based features. Furthermore, the study by [28] shows that
the choice of texture feature extraction method (GLCM and LBP) significantly influences feature quality (contrast and
correlation), which subsequently determines classification accuracy.

Therefore, it can be concluded that improvements to our system should involve, first increasing dataset size and
diversity—or using transfer learning on larger pre-trained CNNs—to substantially increase accuracy, as seen in [27], and
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refining texture extraction (perhaps fusing GLCM with other descriptors like LBP) and standardizing image contrast to
enhance feature separability, as demonstrated in [28].

These recommendations align with the empirical trends observed in Tables 1-4 and Figures 4-5, where
performance suffered under aggressive training regimes or when feature distinctions were insufficien

4. CONCLUSION

This study successfully addressed the challenge of identifying medicinal plant species with high morphological
similarity—specifically white ginger, mango ginger, and yellow turmeric—by integrating GLCM-based texture extraction
with a Backpropagation Neural Network. Based on the experimental results of 63 digital images, the system achieved a
peak accuracy of 65.03% at a specific configuration of a 0.1 learning rate and 100 epochs. A critical scientific insight
gained from this research is that for small-scale texture datasets, smaller hyperparameter values are more effective in
maintaining computational stability and preventing weight divergence. The study observed a trend where excessive
increases in learning rate and epoch count triggered a decrease in accuracy, indicating that "over-training" on limited texture
samples significantly degrades model generalization.

The methodological contribution of this research lies in providing an empirical framework for hyperparameter
sensitivity analysis in resource-constrained environments. While previous studies often utilize large-scale datasets or fixed
parameters, this research demonstrates that a precise, low-parameter GLCM-BPNN approach remains a viable and
computationally efficient tool for distinguishing visually identical leaf textures. These findings inform future small-scale
image classification research by highlighting that model depth or high iteration counts do not inherently guarantee better
performance when the dataset size is restricted; instead, the focus should be on the synergy between feature resolution
(standardized at 500 x 500 pixels in this study) and parameter stability.

As arecommendation for future development, the reliability of artificial intelligence in medicinal plant digitization
should be strengthened through the expansion of local plant image datasets. It is advised that relevant research institutions
facilitate the creation of a national digital botanical database to optimize model training. Furthermore, subsequent research
should explore stricter data normalization methods and hybrid network architectures to minimize classification errors
caused by variations in light intensity and image focus in field-captured data.
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