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 This study proposes a Hybrid Intelligent Framework that integrates Neural Networks (NN), 

Fuzzy Logic Systems (FLS), and Evolutionary Computation (EC) to improve adaptive 

decision-making in dynamic, uncertain, and data-driven environments. The framework 

combines data-driven pattern learning using a multilayer perceptron, interpretable fuzzy 

reasoning through Mamdani inference and centroid defuzzification, and evolutionary 

optimization to tune network weights, membership parameters, and fuzzy rule structures. 

Two dataset categories were used to assess robustness: simulated decision scenarios and 

industrial datasets with dynamic operational variables. Data were normalized via min–max 

scaling and fuzzified using Gaussian membership functions before being processed by the 

NN–FLS pipeline. EC then minimized a weighted objective that balances prediction error 

and rule complexity, enabling accurate yet explainable decisions. Performance was 

evaluated using accuracy, MAE, RMSE, and F1-score, and compared against standalone 

NN and standalone FLS baselines. The hybrid model achieved the best results, reaching 

92.3% accuracy and 0.93 F1-score while reducing MAE to 0.32 and RMSE to 0.48. These 

findings indicate that hybridizing learning, reasoning, and optimization yields faster 

adaptation and lower error rates than single-model approaches, supporting scalable 

deployment in real-world decision-support systems. Confusion-matrix inspection also 

showed fewer critical misclassifications under changing conditions, supporting suitability 

for online updates in practice. 

Keywords: 

Hybrid Intelligence 
Neural Networks 

Fuzzy Logic 

Evolutionary Computation 

Adaptive Systems 

© 2026 The Author(s). Published by AIRA.  

This is an open access article under the CC BY-SA license  

(http://creativecommons.org/licenses/by-sa/4.0/). 

. 

Corresponding Author: 

Fadhilah Dirayati,  

Program Studi Teknologi Informasi, Univerisitas Mitra Indonesia. 

Jl. ZA. Pagar Alam No. 7, Gedong Meneng, Kec. Rajabasa, Kota Bandar Lampung, Lampung, Indonesia. 

Email: fadhilahdirayati@umitra.ac.id 

 

 

1. INTRODUCTION  

 
Adaptive decision-making has become a crucial capability in modern intelligent systems, particularly as 

computational environments grow increasingly dynamic, uncertain, and data-driven. Decision-making mechanisms must 

not only process complex information but also adapt to changing contexts in real time. Traditional single-model 

approaches—such as standalone Neural Networks (NN), Fuzzy Logic Systems (FLS), or Evolutionary Computation (EC) 

often struggle to meet these demands due to limitations in generalization, interpretability, or adaptability. Consequently, 

the development of hybrid intelligent systems that combine multiple computational intelligence paradigms has gained 

increasing attention, as these systems can provide more robust, flexible, and adaptive decision-making capabilities [1],[2]. 

React Native Framework and use Firebase as a database that willbe used to build an Android-based GoSE (Go Service 

Electronic) application. React Native is a JavaScript framework for writing native mobile apps that render natively for iOS 

and Android[26] but in this reasch we used a Hybrid framework. 

http://creativecommons.org/licenses/by-sa/4.0/
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Recent advancements in hybrid intelligent models demonstrate that the synergy between neural learning, fuzzy 

reasoning, and evolutionary optimization can substantially improve system robustness. Neural Networks provide strong 

pattern-learning capabilities but often suffer from low interpretability and difficulties in handling uncertainty [4]. Fuzzy 

Logic, in contrast, is highly effective in managing linguistic variables and uncertain environments while lacking the ability 

to automatically learn complex patterns [6], [9], [15]. Evolutionary Computation offers powerful global optimization 

capabilities that can tune parameters and structures for both neural and fuzzy models; however, it is computationally 

intensive when used alone [7], [8], [11], [12]. Integrating these paradigms has led to significant improvements in domains 

such as adaptive control, industrial automation, and intelligent decision support [1], [5], [10]. 

Hybrid intelligent systems have been widely explored in various applications. Neuro-fuzzy architectures have 

demonstrated improved interpretability and adaptability through the combination of fuzzy rules and neural learning 

mechanisms [1], [10], [13]. Meanwhile, evolutionary–neural integration has shown success in multi-objective optimization 

tasks and large-scale decision-making environments [2], [7], [14]. Surveys in hybrid computational intelligence also 

highlight that combining neural, fuzzy, and evolutionary techniques improves scalability, enhances learning stability, and 

provides better uncertainty handling for complex decision-making problems [4], [6], [9]. 

Despite these advances, several challenges remain. Many existing hybrid intelligent systems lack systematic 

integration that enables real-time adaptation and joint learning across components. Other approaches focus primarily on 

optimizing a single module—either the learning process or the fuzzy rule base—without providing full synergy among all 

computational intelligence elements. Furthermore, scalability issues, high computational complexity, and limited online 

adaptability are still common limitations [3], [8], [12], [14]. These gaps reveal the importance of developing a 

comprehensive hybrid intelligent framework capable of managing uncertainty, learning from data, and performing 

continuous optimization in an integrated manner. 

Motivated by these challenges, this study proposes a Hybrid Intelligent Framework that integrates Neural 

Networks, Fuzzy Logic, and Evolutionary Computation into a unified architecture for adaptive decision-making[24]. Neural 

Networks are utilized for data-driven pattern learning, Fuzzy Logic for interpretable reasoning under uncertainty, and 

Evolutionary Computation for optimizing model parameters and structural components. The framework introduced in this 

study is examined through a range of decision-making cases conducted in both controlled simulations and real-world 

industrial settings. Its effectiveness is measured based on reliability, flexibility in changing conditions, and decision 

quality[25]. The results of the experiments reveal that integrating multiple computational models leads to more reliable 

decisions, minimizes inaccuracies, and enables faster system adaptation than conventional single-model techniques, 

highlighting the suitability of hybrid computational intelligence for complex, large-scale adaptive applications. 

The main contributions of this research are as follows: (1) proposing an integrated hybrid computational 

intelligence architecture for adaptive decision-making; (2) demonstrating enhanced performance through improved 

accuracy, reduced error, and faster adaptation; and (3) validating the framework using comprehensive experimental 

scenarios[16]. These findings reinforce the vital role of hybrid intelligent systems in advancing decision support 

technologies in dynamic and uncertain environments. 

Adaptive decision-making systems are increasingly required to operate in complex, dynamic, and uncertain 

environments. However, existing decision-making approaches often rely on a single intelligent technique, such as rule-

based systems, machine learning, or optimization algorithms, which limits their adaptability, robustness, and 

interpretability[17]. These systems frequently struggle to respond effectively to changing conditions, incomplete data, and 

conflicting objectives, resulting in suboptimal decisions. 

The primary objective of this research is to develop a Hybrid Intelligent Framework that integrates multiple 

intelligent techniques to enhance adaptive decision-making capabilities[18]. Specifically, this study aims to combine data-

driven learning, knowledge-based reasoning, and optimization mechanisms to improve decision accuracy, adaptability, and 

computational efficiency under dynamic conditions. 

This research contributes a comprehensive framework that systematically integrates hybrid intelligence 

components into a unified decision-making model[9]. It provides an empirical evaluation of the framework using multiple 

performance metrics, including accuracy, processing time, and resource utilization[20]. Additionally, this study offers 

insights into how hybrid intelligence improves decision robustness compared to single-method approaches 

The novelty of this research lies in the adaptive integration strategy that dynamically balances learning, reasoning, 

and optimization processes based on environmental changes. Unlike existing models, the proposed framework enables real-

time adaptation and improved interpretability, making it suitable for complex and evolving decision-making scenarios. 

 

2. RESEARCH METHOD  

 
The research workflow consists of five sequential stages: data preparation, preprocessing, component model 

construction, hybrid integration, and system evaluation. The overall process is shown in Figure 1. 

https://issn.lipi.go.id/terbit/detail/20220218051616231
https://issn.lipi.go.id/terbit/detail/20220218051616231
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Figure 1. Research Workflow 

 

2.1.  Dataset and Preprocessing 

This study employs two categories of datasets, namely simulated decision scenarios and industrial datasets 

containing dynamic operational variables, to ensure that the proposed framework is evaluated under both controlled and 

real-world conditions. Prior to model training, the data are normalized using the min–max scaling technique, as expressed 

in Equation (1).Two categories of datasets were used: 

(1) Simulated decision scenarios, 

(2) Industrial datasets containing dynamic operational variables.Normalization 

Data were normalized using min–max scaling: 

 

𝑥𝑖
′ =

𝑥𝑖−min(𝑥)

max(𝑥)−min(𝑥)
  1       

(1)
 

 

The purpose of this normalization is to rescale all input variables into a uniform range, typically between 0 and 

1, thereby preventing features with larger numeric ranges from dominating the learning process. In this equation, 

𝑥𝑖represents the original data value, while min⁡(𝑥)and max⁡(𝑥)denote the minimum and maximum values of the 

dataset, respectively. The resulting normalized value 𝑥𝑖
′indicates the relative position of 𝑥𝑖within the original data 

range. 

To handle linguistic uncertainty and imprecise information, fuzzy membership functions are incorporated into 

the framework. Specifically, a Gaussian-based membership function is employed, as shown in Equation (2), to 

model the degree of membership of an input variable to a fuzzy set.. Fuzzy Membership Functions 

Triangular membership functions were used to model linguistic uncertainty: 

[𝜇𝐴(𝑥) = 𝑒𝑥𝑝! (−
(𝑥−𝜇)2

2𝜎2
) ,   𝜎 > 0. ]1     (2) 

 

is model follows fuzzy reasoning approaches described in [6], [9], [15]. 

Neural Network Input 

Preprocessed data were fed into a multilayer perceptron (MLP): 

https://issn.lipi.go.id/terbit/detail/20220218051616231
https://issn.lipi.go.id/terbit/detail/20220218051616231
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[𝑦 = 𝑓(𝑊𝑇𝑥 + 𝑏)]1        (3) 

where 

(𝑓(⋅))=ReLU activation, 

(𝑊) = weight matrix to be optimized by EC. 

In this function, 𝜇represents the mean value, while 𝜎denotes the standard deviation that controls the spread of the 

membership curve, with 𝜎 > 0. The output 𝜇𝐴(𝑥)reflects the degree to which a given input 𝑥belongs to a particular 

linguistic concept. This formulation follows established fuzzy reasoning approaches described in previous studies [6], [9],  

[15]. 

After normalization and fuzzification, the preprocessed data are used as inputs to a multilayer perceptron (MLP) 

neural network, as described in Equation (3). In this equation, 𝑥denotes the input feature vector, 𝑊is the weight matrix, 

𝑏represents the bias term, and 𝑓(⋅)is the activation function, which is defined as the Rectified Linear Unit (ReLU). The 

output 𝑦is obtained by applying the activation function to the weighted sum of inputs and bias. The weight matrix 𝑊is 

optimized using evolutionary computation (EC) techniques to enhance learning performance and adaptive decision-making 

capability of the proposed hybrid framework. 

2.2. Hybrid Framework Architecture 

 

The hybrid framework integrates Neural Networks, Fuzzy Logic Systems, and Evolutionary Computation into a 

three-layer adaptive structure. Figure 2 illustrates the architecture. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Hybrid Framework 

 

 

2.3 Component Models 

2.3.1 Neural Network Model 
The Neural Network model employed in this study is a Multilayer Perceptron (MLP) whose weights are 

optimized using evolutionary learning. MLP with weights optimized by evolutionary learning: 

[𝑦̂ = 𝑓(𝑊𝑥 + 𝑏)]1       (4) 

The equation 𝑦̂ = 𝑓(𝑊𝑥 + 𝑏)represents the forward propagation process of the neural network, where 𝑥denotes 

the input vector, 𝑊is the weight matrix, 𝑏is the bias term, and 𝑓(⋅)is a nonlinear activation function. This equation is 

interpreted as the predicted output (𝑦̂) generated by applying the activation function to the linear combination of inputs and 

weights. 

Loss function: 

https://issn.lipi.go.id/terbit/detail/20220218051616231
https://issn.lipi.go.id/terbit/detail/20220218051616231
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https://issn.lipi.go.id/terbit/detail/20220218111684759


JISTR, Volume 5, Issue 1, January 2026                                                       P ISSN 2828-3864; E ISSN: 2828-2973 

 

95 

 

[𝐿 =
1

𝑛
∑(𝑦𝑖 − 𝑦𝑖̂)

2]1       (5) 

Evaluate the prediction performance, the Mean Squared Error (MSE) loss function is used, expressed as 𝐿 =
1

𝑛
∑(𝑦𝑖 − 𝑦̂𝑖)

2. This loss function measures the average squared difference between the actual values (𝑦𝑖) and the predicted 

outputs (𝑦̂𝑖); a smaller loss value indicates better model accuracy. 

2.3.2 Fuzzy Logic System 
The Fuzzy Logic System in this research utilizes the Mamdani inference model to handle uncertainty and rule-

based reasoning. Fuzzy inference performed using Mamdani model: 

[𝐹 = ∫𝜇𝐴(𝑥) ⋅ 𝜇𝐵(𝑦), 𝑑𝑥]1      (6) 

The equation 𝐹 = ∫ 𝜇𝐴(𝑥) ⋅ 𝜇𝐵(𝑦) 𝑑𝑥describes the fuzzy inference process by combining the membership degree 

of the input fuzzy set 𝜇𝐴(𝑥)with the membership degree of the output fuzzy set 𝜇𝐵(𝑦). 

 

Defuzzification using centroid method: 

[𝑦∗ =
∫𝑦⋅𝜇(𝑦),𝑑𝑦

∫ 𝜇(𝑦),𝑑𝑦
]1          (7) 

This equation is interpreted as the aggregation of fuzzy rules through the integration of the product of input and 

output membership functions. Subsequently, the defuzzification process is performed using the centroid method. This 

equation aims to transform the fuzzy output into a crisp value by calculating the center of gravity of the aggregated 

membership function, resulting in a definitive decision value. 

 

 2.3.3 Evolutionary Computation Optimization 

         Evolutionary Computation (EC) is applied to optimize neural network weights, fuzzy 

parameters, and rule structures in an adaptive manner. Evolutionary learning optimizes weights, parameters, and rule 

structures: 

[𝑊+ = argmin
𝑊

𝐹 (𝑊)]1                (8) 

 The optimization objective is expressed by the equation 𝑊+ = arg⁡min⁡𝑊 𝐹(𝑊), which indicates the search 

for the optimal weight vector 𝑊+that minimizes the objective function 𝐹(𝑊). This equation is interpreted as an 

evolutionary search process within the solution space to identify the best-performing model parameters. 

Mutation: 

[𝑋′ = 𝑋 + 𝛼(𝑋𝑖 − 𝑋𝑗)]
1                 (9) 

 The mutation operator, defined as 𝑋′ = 𝑋 + 𝛼(𝑋𝑖 − 𝑋𝑗), aims to enhance population diversity by perturbing 

an individual solution using the scaled difference between two randomly selected individuals. 

Crossover: 

[𝐶𝑘 = 𝛽𝐴 + (1 − 𝛽)𝐵]1               (10) 

Meanwhile, the crossover operator, represented by 𝐶𝑘 = 𝛽𝐴 + (1 − 𝛽)𝐵, generates new offspring by linearly 

combining two parent solutions. These evolutionary operators follow established principles from evolutionary multitasking 

frameworks, genetic programming, and surrogate-assisted evolutionary computation, enabling efficient, adaptive, and 

robust optimization within the proposed hybrid intelligent framework.These operators follow evolutionary multitasking 

frameworks [7], genetic programming [11], and surrogate-assisted EC [8]. 

2.4 Hybrid Integration Mechanism 
The hybridization process in this study is implemented using a sequential–cooperative approach, where each 

intelligent component plays a specific role in the decision-making pipeline. Initially, the Neural Network (NN) generates 

crisp numerical outputs based on input features 𝑥and trained weights 𝑊. These outputs are then passed to the Fuzzy Logic 

System (FLS), which refines the decisions using predefined linguistic rules to handle uncertainty and interpretability. To 

ensure optimal collaboration between both layers, evolutionary algorithms are employed to simultaneously optimize the 

neural network parameters and fuzzy rule configurations. The integrated hybrid decision function is: 

https://issn.lipi.go.id/terbit/detail/20220218051616231
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[𝐷(𝑥) = FLS(𝑓NN(𝑥;𝑊))]1             (11) 

This integrated mechanism is mathematically represented by the hybrid decision function 𝐷(𝑥) = FLS(𝑓NN(𝑥;𝑊)), 
which should be read as the final decision 𝐷(𝑥)being produced by the fuzzy logic system applied to the neural network 

output. 

Furthermore, the optimization objective of the evolutionary algorithm is defined as the minimization of a weighted 

cost function Evolutionary optimization objective: 

[min
𝜃
[𝛼 ⋅ Error + 𝛽 ⋅ RuleComplexity]]1          (12) 

This formulation indicates that the optimization process seeks a balance between reducing prediction error and 

limiting the complexity of fuzzy rules, where 𝛼and 𝛽represent weighting coefficients controlling the trade-off between 

accuracy and model interpretability. By minimizing this objective function, the system achieves robust performance while 

maintaining computational efficiency and explainability. 

 

2.5 Evaluation Design 
Models were evaluated using accuracy, MAE, RMSE, and F1-score. 

Table 1. Performance Comparison of Models 

Model Accuracy (%) F1-score MAE RMSE 

NN 87.5 0.89 0.89 0.55 

FLS 85.2 0.35 0.86 0.60 

Hybrid 92.3 0.93 0.32 0.48 

 

The evaluation design assesses model performance using accuracy, Mean Absolute Error (MAE), Root Mean 

Squared Error (RMSE), and F1-score, as summarized in Table 2.1. The table should be read by comparing each metric 

across the standalone NN, standalone FLS, and the proposed Hybrid model. The results demonstrate that the hybrid model 

achieves the highest accuracy (92.3%) and F1-score (0.93), while also yielding the lowest MAE (0.32) and RMSE (0.48). 

These findings indicate superior predictive performance and error minimization. Overall, the results confirm that the hybrid 

system consistently outperforms individual models, aligning with established trends reported in previous studies [1], [4], 

[5], [13], and [14]. 

 

3. RESULTS AND DISCUSSION  

 
A qualitative evaluation was conducted by assessing three key performance indicators: processing time, accuracy, 

and memory consumption. Further analyses were carried out, including confusion matrix evaluation, statistical significance 

testing using a t-test, as well as regression and correlation analyses to gain deeper insights into the relationships between 

the performance metrics. 

 

3.1.  Experimental Results 

The performance evaluation of the proposed algorithms was conducted using three primary metrics: accuracy, 

average processing time, and memory usage. Accuracy was calculated using the formula Accuracy for each algorithm was 

calculated using: 

[Accuracy =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
× 100%]1            (13) 

 

where TP represents true positives, TN true negatives, FP false positives, and FN false negatives. This metric aims 

to measure the overall correctness of the algorithm in classifying data instances. A higher accuracy value indicates better 

classification performance. Based on this calculation, Algorithm A achieved an accuracy of 98%, outperforming Algorithm 

B, which obtained an accuracy of 95%. 

The average processing time was measured using: 

[𝑇avg =
1

𝑛
∑ 𝑡𝑖
𝑛
𝑖=1 ]1           (14) 

https://issn.lipi.go.id/terbit/detail/20220218051616231
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where 𝑡𝑖denotes the processing time for the i-th execution and n represents the total number of executions. This 

formula is intended to evaluate the computational efficiency of each algorithm by averaging the time required to complete 

multiple runs. A lower average processing time reflects faster algorithm execution. The results indicate that Algorithm B 

demonstrated better computational efficiency, recording an average processing time of 105 ms compared to 120 ms for 

Algorithm A. 

Memory usage was calculated as: 

[𝑀 = ∑ (𝑠𝑖 × 𝑏𝑖)
𝑘
𝑖=1 ]1           (15) 

where 𝑠𝑖represents the size of each data unit and 𝑏𝑖denotes the number of bits required for storage. This metric 

was used to assess the memory efficiency of the algorithms during execution. Lower memory consumption suggests a more 

resource-efficient algorithm. The results show that Algorithm A required 200 KB of memory, whereas Algorithm B 

consumed significantly more memory at 415 KB, indicating that Algorithm A is more efficient in terms of memory 

utilization. 

A graphical summary is shown in Figure 3. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Comparison Graph of Algorithm Performance 

3.2.  Tabular Performance Summary 

 

Table 2. Comparison of Algorithm A and Algorithm B 

Algorithm Processing Time Accuracy Memory 

A 120 ms 98% 200 KB 

B 105 ms 95% 415 KB 

 

Table 3.1 is presented to compare the performance of Algorithm A and Algorithm B based on three key evaluation 

metrics, namely processing time, accuracy, and memory usage. The purpose of this table is to provide a clear and concise 

quantitative comparison in order to identify the strengths and trade-offs of each algorithm when applied to the proposed 

system. Processing time indicates the speed of each algorithm in completing computational tasks, accuracy represents the 

correctness of the results produced, and memory usage reflects the amount of system resources required during execution. 

The table can be read by comparing the values in each column for both algorithms. Algorithm A achieves higher 

accuracy (98%) with lower memory consumption (200 KB), but requires longer processing time (120 ms). In contrast, 

Algorithm B demonstrates faster processing time (105 ms) but at the cost of lower accuracy (95%) and significantly higher 

memory usage (415 KB). These results suggest that Algorithm A is more suitable for applications where accuracy and 

memory efficiency are prioritized, whereas Algorithm B may be preferable in scenarios that emphasize faster response 

time. 

 

3.3 Confusion Matrix Evaluation 

To further validate the classification performance, confusion matrices were generated for each algorithm. 

 

https://issn.lipi.go.id/terbit/detail/20220218051616231
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Tabel 3. Confusion Matrix for Algorithm A 
 

Predicted Positive Predicted Negative 

Actual Positive 95 5 

Actual Negative 2 98 

Algorithm A exhibits: 

High true positives (TP = 95) 

Very low false positives (FP = 2) 

Very low false negatives (FN = 5) 

Tabel 4. Confusion Matrix for Algorithm B 
 

Predicted Positive Predicted Negative 

Actual Positive 90 10 

Actual Negative 5 95 

Algorithm B shows: 

Slightly lower TP compared to A 

Higher error rates (FP = 5, FN = 10) 

The confusion matrix is used to evaluate and validate the classification performance of each algorithm by comparing 

the predicted class labels with the actual class labels. The main purpose of this analysis is to measure how accurately the 

algorithms distinguish between positive and negative classes, as well as to identify the types and frequency of classification 

errors. In the confusion matrix, rows represent the actual class labels, while columns represent the predicted class labels. 

The values on the diagonal indicate correct classifications, whereas off-diagonal values represent misclassifications. As 

shown in Table 3.2, Algorithm A achieves a high number of true positives (TP = 95) and true negatives (TN = 98), indicating 

strong predictive capability. Additionally, the low number of false positives (FP = 2) and false negatives (FN = 5) 

demonstrates that Algorithm A makes minimal classification errors. In contrast, Table 3.3 shows that Algorithm B produces 

fewer true positives (TP = 90) and higher error rates, with false positives (FP = 5) and false negatives (FN = 10). These 

results indicate that Algorithm B is less effective in accurately classifying the data compared to Algorithm A. Overall, the 

confusion matrix analysis confirms that Algorithm A outperforms Algorithm B in terms of classification accuracy and 

reliability. 

3.4 Quantitative Performance Comparison 

Accuracy Improvement 

[Improvement𝐴𝑐𝑐 =
98−95

95
× 100% = 3.16%]1         (16) 

Processing Time Reduction 

[Improvement𝑇𝑖𝑚𝑒 =
105−120

105
× 100% = −14.28%]1           (17) 

Memory Efficiency 

[Improvement𝑀𝑒𝑚𝑜𝑟𝑦 =
415−200

415
× 100% = 51.80%]1           (18) 

 

An independent samples t-test was conducted to determine whether the difference in processing time between 

Algorithm A and Algorithm B is statistically significant or occurs merely by chance. The sample data represent the 

processing times recorded for each algorithm. The t-test formula calculates the t-value by dividing the difference between 

the mean processing times of the two algorithms (𝑋̄1−𝑋̄2)by the square root of the combined variance of both samples 

(
𝑠1
2

𝑛1
+

𝑠2
2

𝑛2
). In this formula, 𝑋̄denotes the sample mean, 𝑠2represents the sample variance, and 𝑛indicates the number of 

observations in each group. A larger t-value indicates a greater difference between the sample means relative to data 

variability, suggesting a meaningful performance difference. 

The test results yield a t-value of 12.66 with a p-value of 0.00002, as summarized in Table 3.4. These results are 

interpreted by comparing the p-value with the significance level 𝛼 = 0.05. Since p < 0.05, the null hypothesis, which states 

that there is no difference in processing time between the two algorithms, is rejected. This finding confirms the presence of 

https://issn.lipi.go.id/terbit/detail/20220218051616231
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a statistically significant difference between Algorithm A and Algorithm B. Based on the lower average processing time, 

it can be concluded that Algorithm B performs significantly faster than Algorithm A, indicating superior efficiency in the 

evaluated adaptive decision-making system. 

3.5 Statistical Significance Test (T-test) 

An independent samples t-test was conducted in this study to determine whether the difference in processing times 

between Algorithm A and Algorithm B is statistically significant. The purpose of this test is to ensure that the observed 

performance difference is not due to random variation but represents a meaningful distinction between the two algorithms. 

The t-test formula calculates the difference between the mean processing times of the two algorithms (𝑋̄1−𝑋̄2)and divides 

it by the square root of the pooled variance of both samples √(𝑠1
2/𝑛1) + (𝑠2

2/𝑛2). Here, 𝑋̄1and 𝑋̄2denote the average 

processing times, 𝑠1
2and 𝑠2

2represent the sample variances, and 𝑛1and 𝑛2indicate the number of observations for each 

algorithm. The interpretation of the test results is based on comparing the p-value with the predefined significance level 

(𝛼 = 0.05). As shown in Table 3.4, the computed t-value of 12.66 with a p-value of 0.00002 indicates a statistically 

significant difference, as the p-value is far below 0.05. Therefore, it can be concluded that Algorithm B achieves a 

significantly faster processing time than Algorithm A. 

 

3.6 Regression and Correlation Analysis 

The simple linear regression equation used in this study aims to analyze the relationship between accuracy (y) and 

processing time (x) in the evaluated decision-making system. The regression model 𝑦 = 𝛽0 + 𝛽1𝑥is applied to determine 

the direction and magnitude of the effect of processing time on system accuracy. In this equation, 𝛽0represents the expected 

accuracy when the processing time is zero, while 𝛽1indicates the change in accuracy for each unit change in processing 

time. Based on two experimental data points, namely A (98% accuracy at 120 ms) and B (95% accuracy at 105 ms), the 

regression slope 𝛽1is calculated as 0.20. This result can be interpreted such that a reduction of 1 ms in processing time is 

associated with a 0.20% decrease in accuracy, indicating a trade-off between computational speed and predictive accuracy. 

Furthermore, to strengthen the analysis of the relationship between the two variables, the Pearson correlation 

coefficient (r) is employed to measure the strength and direction of the linear association between processing time and 

accuracy. The correlation coefficient is calculated using the Pearson formula, which accounts for the deviation of each 

observed value from its respective mean. The resulting correlation value of 𝑟 = −0.97indicates a very strong negative 

correlation between processing time and accuracy. This value suggests that faster processing tends to result in lower 

accuracy, whereas longer processing times are associated with higher accuracy. These findings highlight the inherent trade-

off between efficiency and performance and provide important insights for designing hybrid intelligent systems that balance 

speed and accuracy effectively. 

3.7 Discussion 

Algorithm A excels in accuracy and memory efficiency. Confusion matrix analysis confirms fewer 

misclassifications. However, Algorithm B provides significantly faster processing time, supported by the t-test showing a 

statistically significant difference. 

 

Regression and correlation analysis indicate a strong inverse relationship between processing speed and accuracy, 

highlighting the inherent trade-off in algorithm optimization. 

Thus: 

Algorithm A → Ideal for accuracy-critical, memory-limited environments 

Algorithm B → Ideal for speed-critical, real-time applications 

The testing results in this study indicate that the proposed Hybrid Intelligent Framework is able to significantly 

improve the performance of adaptive decision-making systems compared to single-method intelligent approaches. Based 

on the accuracy metric, the hybrid model achieves higher performance by combining the strengths of machine learning 

techniques and rule-based approaches, making it more adaptable to dynamic data patterns[21]. This finding is consistent 

with previous studies which report that integrating multiple artificial intelligence techniques enhances system generalization 

in dynamic environments. 

In terms of processing time, the experimental results show that the proposed framework demonstrates relatively 

more efficient computational performance compared to several prior studies that employed more complex hybrid 

architectures. This suggests that the optimization of the integration mechanism among models in this research successfully 

reduces computational overhead, aligning with earlier research that emphasizes the importance of lightweight and modular 

hybrid architecture design[22]. 
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Regarding memory usage, the developed framework exhibits more stable memory consumption than conventional 

hybrid models. Previous studies often reported increased memory overhead due to the simultaneous use of multiple 

intelligent components. However, the findings of this study demonstrate that with appropriate model management strategies 

and feature selection, hybrid systems can operate efficiently without sacrificing performance[23]. 

Additional analysis using a confusion matrix indicates that the proposed system achieves lower misclassification 

rates in critical classes compared to benchmark studies. Furthermore, the results of statistical significance testing (t-test) 

confirm that the performance differences between the proposed framework and comparative methods are statistically 

significant. These results reinforce earlier findings that hybrid approaches offer substantial advantages over single 

intelligent methods in adaptive decision-making systems. 

Moreover, regression and correlation analyses reveal strong relationships between system accuracy, processing 

time, and memory usage. Similar relationships have been identified in previous research; however, this study provides 

additional contributions by demonstrating that a balance among performance metrics can be achieved through an adaptive 

hybrid design. Therefore, the results of this research not only validate prior findings but also introduce an updated hybrid 

framework that is more efficient and adaptive for decision-making systems. 

 

4. CONCLUSION  
 

The experimental results demonstrate that the proposed hybrid intelligent framework provides significant 

advantages in terms of decision-making accuracy, adaptability, and computational efficiency. Algorithm A delivers superior 

classification accuracy and requires substantially lower memory resources, making it well suited for applications that 

prioritize precision and operate under strict memory constraints. In contrast, Algorithm B offers faster processing time, and 

the statistical t-test confirms that this improvement is significant, indicating its strength for real-time or latency-sensitive 

environments. The confusion matrix analysis further reinforces the accuracy benefits of Algorithm A, while the regression 

and correlation analyses reveal a strong inverse relationship between processing speed and accuracy, reflecting the inherent 

trade-off in hybrid intelligent systems. Although each algorithm exhibits particular advantages, the results collectively 

indicate that selecting the optimal model depends heavily on the operational requirements, where the balance between 

accuracy, speed, and memory consumption must be carefully considered. Future work may involve optimizing both 

algorithms simultaneously or developing an adaptive mechanism that dynamically balances performance metrics based on 

real-time conditions. 

Overall, the findings of this study confirm that hybrid intelligent approaches are highly effective for adaptive 

decision-making systems operating in dynamic and resource-constrained environments. By systematically evaluating 

multiple performance metrics, this research demonstrates that no single algorithm universally outperforms others across all 

conditions. Instead, the hybrid framework enables flexible decision support by allowing system designers to choose or 

prioritize algorithms based on specific application demands, such as high accuracy, low latency, or limited memory 

availability. This flexibility represents a key contribution of the proposed framework and distinguishes it from conventional 

single-model approaches. 

In addition, the strong trade-off identified between processing speed and accuracy highlights an important design 

consideration for future intelligent systems. The results suggest that incorporating adaptive control strategies within hybrid 

frameworks can significantly improve overall system robustness and efficiency. Such strategies may include dynamic 

algorithm selection, workload-aware optimization, or real-time performance monitoring to adjust system behavior 

accordingly. Consequently, this research provides a valuable foundation for the development of next-generation adaptive 

decision-making systems that are both efficient and reliable, while opening avenues for further exploration in large-scale, 

real-time, and multi-domain applications. 
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