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This study proposes a Hybrid Intelligent Framework that integrates Neural Networks (NN),
Fuzzy Logic Systems (FLS), and Evolutionary Computation (EC) to improve adaptive
decision-making in dynamic, uncertain, and data-driven environments. The framework
combines data-driven pattern learning using a multilayer perceptron, interpretable fuzzy
reasoning through Mamdani inference and centroid defuzzification, and evolutionary
optimization to tune network weights, membership parameters, and fuzzy rule structures.
Two dataset categories were used to assess robustness: simulated decision scenarios and
industrial datasets with dynamic operational variables. Data were normalized via min—max
scaling and fuzzified using Gaussian membership functions before being processed by the
NN-FLS pipeline. EC then minimized a weighted objective that balances prediction error
and rule complexity, enabling accurate yet explainable decisions. Performance was
evaluated using accuracy, MAE, RMSE, and F1-score, and compared against standalone
NN and standalone FLS baselines. The hybrid model achieved the best results, reaching
92.3% accuracy and 0.93 F1-score while reducing MAE to 0.32 and RMSE to 0.48. These
findings indicate that hybridizing learning, reasoning, and optimization yields faster
adaptation and lower error rates than single-model approaches, supporting scalable
deployment in real-world decision-support systems. Confusion-matrix inspection also
showed fewer critical misclassifications under changing conditions, supporting suitability
for online updates in practice.
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1. INTRODUCTION

Adaptive decision-making has become a crucial capability in modern intelligent systems, particularly as
computational environments grow increasingly dynamic, uncertain, and data-driven. Decision-making mechanisms must
not only process complex information but also adapt to changing contexts in real time. Traditional single-model
approaches—such as standalone Neural Networks (NN), Fuzzy Logic Systems (FLS), or Evolutionary Computation (EC)
often struggle to meet these demands due to limitations in generalization, interpretability, or adaptability. Consequently,
the development of hybrid intelligent systems that combine multiple computational intelligence paradigms has gained
increasing attention, as these systems can provide more robust, flexible, and adaptive decision-making capabilities [1],[2].
React Native Framework and use Firebase as a database that willbe used to build an Android-based GoSE (Go Service
Electronic) application. React Native is a JavaScript framework for writing native mobile apps that render natively for iOS
and Android[26] but in this reasch we used a Hybrid framework.
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Recent advancements in hybrid intelligent models demonstrate that the synergy between neural learning, fuzzy
reasoning, and evolutionary optimization can substantially improve system robustness. Neural Networks provide strong
pattern-learning capabilities but often suffer from low interpretability and difficulties in handling uncertainty [4]. Fuzzy
Logic, in contrast, is highly effective in managing linguistic variables and uncertain environments while lacking the ability
to automatically learn complex patterns [6], [9], [15]. Evolutionary Computation offers powerful global optimization
capabilities that can tune parameters and structures for both neural and fuzzy models; however, it is computationally
intensive when used alone [7], [8], [11], [12]. Integrating these paradigms has led to significant improvements in domains
such as adaptive control, industrial automation, and intelligent decision support [1], [5], [10].

Hybrid intelligent systems have been widely explored in various applications. Neuro-fuzzy architectures have
demonstrated improved interpretability and adaptability through the combination of fuzzy rules and neural learning
mechanisms [1], [10], [13]. Meanwhile, evolutionary—neural integration has shown success in multi-objective optimization
tasks and large-scale decision-making environments [2], [7], [14]. Surveys in hybrid computational intelligence also
highlight that combining neural, fuzzy, and evolutionary techniques improves scalability, enhances learning stability, and
provides better uncertainty handling for complex decision-making problems [4], [6], [9].

Despite these advances, several challenges remain. Many existing hybrid intelligent systems lack systematic
integration that enables real-time adaptation and joint learning across components. Other approaches focus primarily on
optimizing a single module—either the learning process or the fuzzy rule base—without providing full synergy among all
computational intelligence elements. Furthermore, scalability issues, high computational complexity, and limited online
adaptability are still common limitations [3], [8], [12], [14]. These gaps reveal the importance of developing a
comprehensive hybrid intelligent framework capable of managing uncertainty, learning from data, and performing
continuous optimization in an integrated manner.

Motivated by these challenges, this study proposes a Hybrid Intelligent Framework that integrates Neural
Networks, Fuzzy Logic, and Evolutionary Computation into a unified architecture for adaptive decision-making[24]. Neural
Networks are utilized for data-driven pattern learning, Fuzzy Logic for interpretable reasoning under uncertainty, and
Evolutionary Computation for optimizing model parameters and structural components. The framework introduced in this
study is examined through a range of decision-making cases conducted in both controlled simulations and real-world
industrial settings. Its effectiveness is measured based on reliability, flexibility in changing conditions, and decision
quality[25]. The results of the experiments reveal that integrating multiple computational models leads to more reliable
decisions, minimizes inaccuracies, and enables faster system adaptation than conventional single-model techniques,
highlighting the suitability of hybrid computational intelligence for complex, large-scale adaptive applications.

The main contributions of this research are as follows: (1) proposing an integrated hybrid computational
intelligence architecture for adaptive decision-making; (2) demonstrating enhanced performance through improved
accuracy, reduced error, and faster adaptation; and (3) validating the framework using comprehensive experimental
scenarios[16]. These findings reinforce the vital role of hybrid intelligent systems in advancing decision support
technologies in dynamic and uncertain environments.

Adaptive decision-making systems are increasingly required to operate in complex, dynamic, and uncertain
environments. However, existing decision-making approaches often rely on a single intelligent technique, such as rule-
based systems, machine learning, or optimization algorithms, which limits their adaptability, robustness, and
interpretability[17]. These systems frequently struggle to respond effectively to changing conditions, incomplete data, and
conflicting objectives, resulting in suboptimal decisions.

The primary objective of this research is to develop a Hybrid Intelligent Framework that integrates multiple
intelligent techniques to enhance adaptive decision-making capabilities[18]. Specifically, this study aims to combine data-
driven learning, knowledge-based reasoning, and optimization mechanisms to improve decision accuracy, adaptability, and
computational efficiency under dynamic conditions.

This research contributes a comprehensive framework that systematically integrates hybrid intelligence
components into a unified decision-making model[9]. It provides an empirical evaluation of the framework using multiple
performance metrics, including accuracy, processing time, and resource utilization[20]. Additionally, this study offers
insights into how hybrid intelligence improves decision robustness compared to single-method approaches

The novelty of this research lies in the adaptive integration strategy that dynamically balances learning, reasoning,
and optimization processes based on environmental changes. Unlike existing models, the proposed framework enables real-
time adaptation and improved interpretability, making it suitable for complex and evolving decision-making scenarios.

2. RESEARCH METHOD

The research workflow consists of five sequential stages: data preparation, preprocessing, component model
construction, hybrid integration, and system evaluation. The overall process is shown in Figure 1.
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Figure 1. Research Workflow

2.1. Dataset and Preprocessing
This study employs two categories of datasets, namely simulated decision scenarios and industrial datasets
containing dynamic operational variables, to ensure that the proposed framework is evaluated under both controlled and
real-world conditions. Prior to model training, the data are normalized using the min—max scaling technique, as expressed
in Equation (1).Two categories of datasets were used:

(1) Simulated decision scenarios,
(2) Industrial datasets containing dynamic operational variables.Normalization
Data were normalized using min—max scaling:

r _ xi—min(x) 1

(M

" max(x)—-min(x)

The purpose of this normalization is to rescale all input variables into a uniform range, typically between 0 and
1, thereby preventing features with larger numeric ranges from dominating the learning process. In this equation,
x;represents the original data value, while min (x)and max (x)denote the minimum and maximum values of the
dataset, respectively. The resulting normalized value x;indicates the relative position of x;within the original data
range.

To handle linguistic uncertainty and imprecise information, fuzzy membership functions are incorporated into
the framework. Specifically, a Gaussian-based membership function is employed, as shown in Equation (2), to
model the degree of membership of an input variable to a fuzzy set.. Fuzzy Membership Functions

Triangular membership functions were used to model linguistic uncertainty:

[MA(x) = exp! (—M), o> 0.]‘ )

202

is model follows fuzzy reasoning approaches described in [6], [9], [15].
Neural Network Input

Preprocessed data were fed into a multilayer perceptron (MLP):
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[y=fW'x+ D) (€)

where
(f(-))=ReLU activation,

(W) = weight matrix to be optimized by EC.

In this function, urepresents the mean value, while odenotes the standard deviation that controls the spread of the
membership curve, with ¢ > 0. The output p,(x)reflects the degree to which a given input xbelongs to a particular
linguistic concept. This formulation follows established fuzzy reasoning approaches described in previous studies [6], [9],
[15].

After normalization and fuzzification, the preprocessed data are used as inputs to a multilayer perceptron (MLP)
neural network, as described in Equation (3). In this equation, xdenotes the input feature vector, Wis the weight matrix,
brepresents the bias term, and f(-)is the activation function, which is defined as the Rectified Linear Unit (ReLU). The
output yis obtained by applying the activation function to the weighted sum of inputs and bias. The weight matrix Wis
optimized using evolutionary computation (EC) techniques to enhance learning performance and adaptive decision-making
capability of the proposed hybrid framework.

2.2. Hybrid Framework Architecture

The hybrid framework integrates Neural Networks, Fuzzy Logic Systems, and Evolutionary Computation into a
three-layer adaptive structure. Figure 2 illustrates the architecture.

Learning Layer (NN)

- MLP for pattern extraction
- ReLU activation

v

Reasoning Layer (Fuzzy
Logic)

- Mamdani inference
- Fuzzy rule base

\4

Optimization Layer
(Evolutionary Comp.)
- GA/DE to optimize NN +

FLS parameters
- Fitness evaluation

Figure 2. Hybrid Framework

2.3 Component Models

2.3.1 Neural Network Model
The Neural Network model employed in this study is a Multilayer Perceptron (MLP) whose weights are

optimized using evolutionary learning. MLP with weights optimized by evolutionary learning:
[y = f(Wx +b)]' (4)

The equation ¥ = f(Wx + b)represents the forward propagation process of the neural network, where xdenotes
the input vector, Wis the weight matrix, bis the bias term, and f(:)is a nonlinear activation function. This equation is
interpreted as the predicted output (y) generated by applying the activation function to the linear combination of inputs and
weights.

Loss function:
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L =250i- 97 (5)

Evaluate the prediction performance, the Mean Squared Error (MSE) loss function is used, expressed as L =
%Z(yi — $;)2. This loss function measures the average squared difference between the actual values (y;) and the predicted
outputs (¥;); a smaller loss value indicates better model accuracy.

2.3.2 Fuzzy Logic System
The Fuzzy Logic System in this research utilizes the Mamdani inference model to handle uncertainty and rule-
based reasoning. Fuzzy inference performed using Mamdani model:

[F = [ua(x) - pup(y), dx]1 (6)

The equation F = [ p,(x) - ug () dxdescribes the fuzzy inference process by combining the membership degree
of the input fuzzy set p4 (x)with the membership degree of the output fuzzy set ug (y).

Defuzzification using centroid method:

« _ Jyr»m.ay]
[y T JuG)ay ] )

This equation is interpreted as the aggregation of fuzzy rules through the integration of the product of input and
output membership functions. Subsequently, the defuzzification process is performed using the centroid method. This
equation aims to transform the fuzzy output into a crisp value by calculating the center of gravity of the aggregated
membership function, resulting in a definitive decision value.

2.3.3 Evolutionary Computation Optimization
Evolutionary Computation (EC) is applied to optimize neural network weights, fuzzy
parameters, and rule structures in an adaptive manner. Evolutionary learning optimizes weights, parameters, and rule
structures:

[W+ = argmin F (W)]1 (3)

The optimization objective is expressed by the equation W* = arg min ,, F(W), which indicates the search
for the optimal weight vector W *that minimizes the objective function F(W). This equation is interpreted as an
evolutionary search process within the solution space to identify the best-performing model parameters.

Mutation:
X' =X+ a(X;—X)]' )

The mutation operator, defined as X' = X + a(X; — X;), aims to enhance population diversity by perturbing
an individual solution using the scaled difference between two randomly selected individuals.

Crossover:
[Ck =BA+ (1 —pB)B] (10)

Meanwhile, the crossover operator, represented by C, = BA + (1 — B)B, generates new offspring by linearly
combining two parent solutions. These evolutionary operators follow established principles from evolutionary multitasking
frameworks, genetic programming, and surrogate-assisted evolutionary computation, enabling efficient, adaptive, and
robust optimization within the proposed hybrid intelligent framework. These operators follow evolutionary multitasking
frameworks [7], genetic programming [11], and surrogate-assisted EC [8].

2.4 Hybrid Integration Mechanism

The hybridization process in this study is implemented using a sequential-cooperative approach, where each
intelligent component plays a specific role in the decision-making pipeline. Initially, the Neural Network (NN) generates
crisp numerical outputs based on input features xand trained weights W. These outputs are then passed to the Fuzzy Logic
System (FLS), which refines the decisions using predefined linguistic rules to handle uncertainty and interpretability. To
ensure optimal collaboration between both layers, evolutionary algorithms are employed to simultaneously optimize the
neural network parameters and fuzzy rule configurations. The integrated hybrid decision function is:
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[D(x) = FLS(fin (x; )]’ (11)

This integrated mechanism is mathematically represented by the hybrid decision function D (x) = FLS(fan(x; W)),
which should be read as the final decision D (x)being produced by the fuzzy logic system applied to the neural network
output.

Furthermore, the optimization objective of the evolutionary algorithm is defined as the minimization of a weighted
cost function Evolutionary optimization objective:

[mein[a - Error+ 8 - RuleComplexity]]1 (12)

This formulation indicates that the optimization process seeks a balance between reducing prediction error and
limiting the complexity of fuzzy rules, where aand Srepresent weighting coefficients controlling the trade-off between
accuracy and model interpretability. By minimizing this objective function, the system achieves robust performance while
maintaining computational efficiency and explainability.

2.5 Evaluation Design
Models were evaluated using accuracy, MAE, RMSE, and F1-score.

Table 1. Performance Comparison of Models

Model Accuracy (%) F1-score MAE RMSE
NN 87.5 0.89 0.89 0.55
FLS 85.2 0.35 0.86 0.60
Hybrid 92.3 0.93 0.32 0.48

The evaluation design assesses model performance using accuracy, Mean Absolute Error (MAE), Root Mean
Squared Error (RMSE), and F1-score, as summarized in Table 2.1. The table should be read by comparing each metric
across the standalone NN, standalone FLS, and the proposed Hybrid model. The results demonstrate that the hybrid model
achieves the highest accuracy (92.3%) and F1-score (0.93), while also yielding the lowest MAE (0.32) and RMSE (0.48).
These findings indicate superior predictive performance and error minimization. Overall, the results confirm that the hybrid
system consistently outperforms individual models, aligning with established trends reported in previous studies [1], [4],
[5], [13], and [14].

3. RESULTS AND DISCUSSION

A qualitative evaluation was conducted by assessing three key performance indicators: processing time, accuracy,
and memory consumption. Further analyses were carried out, including confusion matrix evaluation, statistical significance
testing using a t-test, as well as regression and correlation analyses to gain deeper insights into the relationships between
the performance metrics.

3.1. Experimental Results

The performance evaluation of the proposed algorithms was conducted using three primary metrics: accuracy,
average processing time, and memory usage. Accuracy was calculated using the formula Accuracy for each algorithm was
calculated using:

TP+TN
TP+TN+FP+FN

[Accuracy = X 100%]1 (13)

where TP represents true positives, TN true negatives, F'P false positives, and F'N false negatives. This metric aims
to measure the overall correctness of the algorithm in classifying data instances. A higher accuracy value indicates better
classification performance. Based on this calculation, Algorithm A achieved an accuracy of 98%, outperforming Algorithm
B, which obtained an accuracy of 95%.

The average processing time was measured using:

[T = 220 11! (14)
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where t;denotes the processing time for the i-th execution and n represents the total number of executions. This
formula is intended to evaluate the computational efficiency of each algorithm by averaging the time required to complete
multiple runs. A lower average processing time reflects faster algorithm execution. The results indicate that Algorithm B
demonstrated better computational efficiency, recording an average processing time of 105 ms compared to 120 ms for
Algorithm A.

Memory usage was calculated as:
[M =l (s x b)]' (15)

where s;represents the size of each data unit and b;denotes the number of bits required for storage. This metric
was used to assess the memory efficiency of the algorithms during execution. Lower memory consumption suggests a more
resource-efficient algorithm. The results show that Algorithm A required 200 KB of memory, whereas Algorithm B
consumed significantly more memory at 415 KB, indicating that Algorithm A is more efficient in terms of memory
utilization.

A graphical summary is shown in Figure 3.

Bl Algorithm A
500 mmm Algorithm B

XL

400

300 1

Value

100 A 95

o
|

Processing Time (ms) Accuracy (%) Memory (KB)

Figure 3. Comparison Graph of Algorithm Performance

3.2. Tabular Performance Summary

Table 2. Comparison of Algorithm A and Algorithm B

Algorithm Processing Time Accuracy Memory
A 120 ms 98% 200 KB
B 105 ms 95% 415 KB

Table 3.1 is presented to compare the performance of Algorithm A and Algorithm B based on three key evaluation
metrics, namely processing time, accuracy, and memory usage. The purpose of this table is to provide a clear and concise
quantitative comparison in order to identify the strengths and trade-offs of each algorithm when applied to the proposed
system. Processing time indicates the speed of each algorithm in completing computational tasks, accuracy represents the
correctness of the results produced, and memory usage reflects the amount of system resources required during execution.

The table can be read by comparing the values in each column for both algorithms. Algorithm A achieves higher
accuracy (98%) with lower memory consumption (200 KB), but requires longer processing time (120 ms). In contrast,
Algorithm B demonstrates faster processing time (105 ms) but at the cost of lower accuracy (95%) and significantly higher
memory usage (415 KB). These results suggest that Algorithm A is more suitable for applications where accuracy and
memory efficiency are prioritized, whereas Algorithm B may be preferable in scenarios that emphasize faster response
time.

3.3 Confusion Matrix Evaluation
To further validate the classification performance, confusion matrices were generated for each algorithm.
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Tabel 3. Confusion Matrix for Algorithm A

Predicted Positive Predicted Negative
Actual Positive 95 5
Actual Negative 2 98

Algorithm A exhibits:
High true positives (TP = 95)
Very low false positives (FP = 2)
Very low false negatives (FN = 5)
Tabel 4. Confusion Matrix for Algorithm B

Predicted Positive Predicted Negative
Actual Positive 90 10
Actual Negative 5 95

Algorithm B shows:
Slightly lower TP compared to A
Higher error rates (FP =5, FN = 10)

The confusion matrix is used to evaluate and validate the classification performance of each algorithm by comparing
the predicted class labels with the actual class labels. The main purpose of this analysis is to measure how accurately the
algorithms distinguish between positive and negative classes, as well as to identify the types and frequency of classification
errors. In the confusion matrix, rows represent the actual class labels, while columns represent the predicted class labels.
The values on the diagonal indicate correct classifications, whereas off-diagonal values represent misclassifications. As
shown in Table 3.2, Algorithm A achieves a high number of true positives (TP = 95) and true negatives (TN = 98), indicating
strong predictive capability. Additionally, the low number of false positives (FP = 2) and false negatives (FN = 5)
demonstrates that Algorithm A makes minimal classification errors. In contrast, Table 3.3 shows that Algorithm B produces
fewer true positives (TP = 90) and higher error rates, with false positives (FP = 5) and false negatives (FN = 10). These
results indicate that Algorithm B is less effective in accurately classifying the data compared to Algorithm A. Overall, the
confusion matrix analysis confirms that Algorithm A outperforms Algorithm B in terms of classification accuracy and
reliability.

3.4 Quantitative Performance Comparison

Accuracy Improvement

[ImprovementACC = 989_595 X 100% = 3.16%]1 (16)

Processing Time Reduction

[Improvementnme = 105;% X 100% = —14.28%]l (17)
Memory Efficiency
[ImprovementMemory = 41:;00 x 100% = 51.80%]1 (18)

An independent samples t-test was conducted to determine whether the difference in processing time between
Algorithm A and Algorithm B is statistically significant or occurs merely by chance. The sample data represent the
processing times recorded for each algorithm. The t-test formula calculates the t-value by dividing the difference between
the mean processing times of the two algorithms (X;—X,)by the square root of the combined variance of both samples

2 2 _ . . .
(Z—1+ :1—2) In this formula, Xdenotes the sample mean, srepresents the sample variance, and nindicates the number of
1 2

observations in each group. A larger t-value indicates a greater difference between the sample means relative to data
variability, suggesting a meaningful performance difference.

The test results yield a t-value of 12.66 with a p-value of 0.00002, as summarized in Table 3.4. These results are
interpreted by comparing the p-value with the significance level @ = 0.05. Since p < 0.05, the null hypothesis, which states
that there is no difference in processing time between the two algorithms, is rejected. This finding confirms the presence of
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a statistically significant difference between Algorithm A and Algorithm B. Based on the lower average processing time,
it can be concluded that Algorithm B performs significantly faster than Algorithm A, indicating superior efficiency in the
evaluated adaptive decision-making system.

3.5 Statistical Significance Test (T-test)

An independent samples t-test was conducted in this study to determine whether the difference in processing times
between Algorithm A and Algorithm B is statistically significant. The purpose of this test is to ensure that the observed
performance difference is not due to random variation but represents a meaningful distinction between the two algorithms.
The t-test formula calculates the difference between the mean processing times of the two algorithms (X; —X,)and divides

it by the square root of the pooled variance of both samples +/(sZ/n;) + (s3/n,). Here, X;and X,denote the average
processing times, s?and sZrepresent the sample variances, and n,and n,indicate the number of observations for each
algorithm. The interpretation of the test results is based on comparing the p-value with the predefined significance level
(a = 0.05). As shown in Table 3.4, the computed t-value of 12.66 with a p-value of 0.00002 indicates a statistically
significant difference, as the p-value is far below 0.05. Therefore, it can be concluded that Algorithm B achieves a
significantly faster processing time than Algorithm A.

3.6 Regression and Correlation Analysis

The simple linear regression equation used in this study aims to analyze the relationship between accuracy (y) and
processing time (X) in the evaluated decision-making system. The regression model y = 5, + f;xis applied to determine
the direction and magnitude of the effect of processing time on system accuracy. In this equation, Syrepresents the expected
accuracy when the processing time is zero, while S;indicates the change in accuracy for each unit change in processing
time. Based on two experimental data points, namely A (98% accuracy at 120 ms) and B (95% accuracy at 105 ms), the
regression slope f3,is calculated as 0.20. This result can be interpreted such that a reduction of 1 ms in processing time is
associated with a 0.20% decrease in accuracy, indicating a trade-off between computational speed and predictive accuracy.

Furthermore, to strengthen the analysis of the relationship between the two variables, the Pearson correlation
coefficient (r) is employed to measure the strength and direction of the linear association between processing time and
accuracy. The correlation coefficient is calculated using the Pearson formula, which accounts for the deviation of each
observed value from its respective mean. The resulting correlation value of r = —0.97indicates a very strong negative
correlation between processing time and accuracy. This value suggests that faster processing tends to result in lower
accuracy, whereas longer processing times are associated with higher accuracy. These findings highlight the inherent trade-
off between efficiency and performance and provide important insights for designing hybrid intelligent systems that balance
speed and accuracy effectively.

3.7 Discussion

Algorithm A excels in accuracy and memory efficiency. Confusion matrix analysis confirms fewer
misclassifications. However, Algorithm B provides significantly faster processing time, supported by the t-test showing a
statistically significant difference.

Regression and correlation analysis indicate a strong inverse relationship between processing speed and accuracy,
highlighting the inherent trade-off in algorithm optimization.

Thus:
Algorithm A — Ideal for accuracy-critical, memory-limited environments
Algorithm B — Ideal for speed-critical, real-time applications

The testing results in this study indicate that the proposed Hybrid Intelligent Framework is able to significantly
improve the performance of adaptive decision-making systems compared to single-method intelligent approaches. Based
on the accuracy metric, the hybrid model achieves higher performance by combining the strengths of machine learning
techniques and rule-based approaches, making it more adaptable to dynamic data patterns[21]. This finding is consistent
with previous studies which report that integrating multiple artificial intelligence techniques enhances system generalization
in dynamic environments.

In terms of processing time, the experimental results show that the proposed framework demonstrates relatively
more efficient computational performance compared to several prior studies that employed more complex hybrid
architectures. This suggests that the optimization of the integration mechanism among models in this research successfully
reduces computational overhead, aligning with earlier research that emphasizes the importance of lightweight and modular
hybrid architecture design[22].
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Regarding memory usage, the developed framework exhibits more stable memory consumption than conventional
hybrid models. Previous studies often reported increased memory overhead due to the simultaneous use of multiple
intelligent components. However, the findings of this study demonstrate that with appropriate model management strategies
and feature selection, hybrid systems can operate efficiently without sacrificing performance[23].

Additional analysis using a confusion matrix indicates that the proposed system achieves lower misclassification
rates in critical classes compared to benchmark studies. Furthermore, the results of statistical significance testing (t-test)
confirm that the performance differences between the proposed framework and comparative methods are statistically
significant. These results reinforce earlier findings that hybrid approaches offer substantial advantages over single
intelligent methods in adaptive decision-making systems.

Moreover, regression and correlation analyses reveal strong relationships between system accuracy, processing
time, and memory usage. Similar relationships have been identified in previous research; however, this study provides
additional contributions by demonstrating that a balance among performance metrics can be achieved through an adaptive
hybrid design. Therefore, the results of this research not only validate prior findings but also introduce an updated hybrid
framework that is more efficient and adaptive for decision-making systems.

4. CONCLUSION

The experimental results demonstrate that the proposed hybrid intelligent framework provides significant
advantages in terms of decision-making accuracy, adaptability, and computational efficiency. Algorithm A delivers superior
classification accuracy and requires substantially lower memory resources, making it well suited for applications that
prioritize precision and operate under strict memory constraints. In contrast, Algorithm B offers faster processing time, and
the statistical t-test confirms that this improvement is significant, indicating its strength for real-time or latency-sensitive
environments. The confusion matrix analysis further reinforces the accuracy benefits of Algorithm A, while the regression
and correlation analyses reveal a strong inverse relationship between processing speed and accuracy, reflecting the inherent
trade-off in hybrid intelligent systems. Although each algorithm exhibits particular advantages, the results collectively
indicate that selecting the optimal model depends heavily on the operational requirements, where the balance between
accuracy, speed, and memory consumption must be carefully considered. Future work may involve optimizing both
algorithms simultaneously or developing an adaptive mechanism that dynamically balances performance metrics based on
real-time conditions.

Overall, the findings of this study confirm that hybrid intelligent approaches are highly effective for adaptive
decision-making systems operating in dynamic and resource-constrained environments. By systematically evaluating
multiple performance metrics, this research demonstrates that no single algorithm universally outperforms others across all
conditions. Instead, the hybrid framework enables flexible decision support by allowing system designers to choose or
prioritize algorithms based on specific application demands, such as high accuracy, low latency, or limited memory
availability. This flexibility represents a key contribution of the proposed framework and distinguishes it from conventional
single-model approaches.

In addition, the strong trade-off identified between processing speed and accuracy highlights an important design
consideration for future intelligent systems. The results suggest that incorporating adaptive control strategies within hybrid
frameworks can significantly improve overall system robustness and efficiency. Such strategies may include dynamic
algorithm selection, workload-aware optimization, or real-time performance monitoring to adjust system behavior
accordingly. Consequently, this research provides a valuable foundation for the development of next-generation adaptive
decision-making systems that are both efficient and reliable, while opening avenues for further exploration in large-scale,
real-time, and multi-domain applications.
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