Analisis Algoritma Convolutional Neural Network (CNN) untuk Pengenalan Pola Tangan Berdasarkan Citra Garis Telapak Tangan

Penulis

  • Fazila Nazifa Edilia Universitas Islam Negeri Sumatera Utara
  • Lailan Sofinah Harahap Universitas Islam Negeri Sumatera Utara
  • Andita Utami Universitas Islam Negeri Sumatera Utara
  • Zianah Nafisah Simbolon Universitas Islam Negeri Sumatera Utara

DOI:

https://doi.org/10.55537/cosmic.v2i4.1495

Kata Kunci:

CNN, Pengolahan Citra, Biometrik, Pengenalan Pola

Abstrak

Individual identification is an important aspect of security and biometric authentication systems. One biometric characteristic with high potential is palm print patterns, as each individual has a unique pattern that is difficult to forge. Therefore, it is necessary to develop an individual identification system based on palm print images using a pattern approach with the Convolutional Neural Network (CNN) method. Test results show that this method is capable of identifying individuals with a fairly high level of accuracy, depending on the image quality and training parameters as well as the network architecture used.

Unduhan

Data unduhan belum tersedia.

Referensi

[1] D. S. Wita and D. Y. Liliana, “Klasifikasi Identitas Dengan Citra Telapak Tangan Menggunakan Convolutional Neural Network (CNN),” J. Rekayasa Teknol. Inf., vol. 6, no. 1, pp. 1–7, 2022, doi: 10.30872/jurti.v6i1.7100.

[2] N. Hardi and J. Sundari, “Pengenalan Telapak Tangan Menggunakan Convolutionall Neural Network (CNN),” Reputasi J. Rekayasa Perangkat Lunak, vol. 4, no. 1, pp. 10–15, 2023, doi: 10.31294/reputasi.v4i1.1951.

[3] M. Li, H. Wang, H. Liu, and Q. Meng, “Palmprint recognition based on the line feature local tri-directional patterns,” IET Biometrics, vol. 11, no. 6, pp. 570–580, 2022, doi: 10.1049/bme2.12085.

[4] S. R. Ganorkar, T. J. Mane, R. R. Patil, D. N. Sonawane, and V. D. Rothe, “Optimizing CNNs for Contactless Palmprint Recognition,” Int. J. Multidiscip. Res., vol. 6, no. 2, pp. 1–9, 2024, doi: 10.36948/ijfmr.2024.v06i02.17585.

[5] A. A. Kurniawana, R. D. Syahb, and R. Ariyani, “Klasifikasi Citra Digital Tulisan Tangan Angka Menggunakan Metode Convolutional Neural Network,” J. Ilm. Tek., vol. 1, no. 136–41, 2022.

[6] D. Arya Nugraha Ilmu Komputer, “Pengembangan Sistem Pengenalan Tulisan Tangan Berbasis Deep Learning,” Duniadata.org, vol. 1, no. 4, pp. 1–15, 2024.

[7] A. Syahlan, Augmentasi Data Untuk Pengenalan Pola Citra Tulisan Tangan Aksara Sunda Menggunakan Metode Convolutional Neural Network. Universitas Komputer Indonesia, 2021.

[8] D. D. Indriani.S, E. J. A. Sinaga, G. Oktavia, H. Syahputra, and F. Ramadhani, “Identifikasi Tanda Tangan Dengan Menggunakan Metode Convolution Neural Network (CNN),” J-Intech, vol. 12, no. 1, pp. 138–147, 2024, doi: 10.32664/j-intech.v12i1.1273.

[9] S. N. Amartama, A. N. Hidayah, P. K. Sari, and R. A. Ramadhani, “Implementasi Convolutional Neural Network (CNN) dalam Pengenalan Pola Penulisan Tangan,” Semin. Nas. Teknol. Sains, vol. 3, no. 1, pp. 133–138, 2024, doi: 10.29407/stains.v3i1.4155.

[10] D. Intan Permatasari, “Implementasi Metode Convolutional Neural Network (CNN) Untuk Klasifikasi Tanaman Herbal Berdasarkan Citra Daun,” Kohesi J. Sains dan Teknol., vol. 3, no. 9, pp. 1–10, 2024, [Online]. Available: https://ejournal.warunayama.org/kohesi

[11] Irennada, A. Solichin, and G. Brotosaputro, “Klasifikasi Gaya Belajar Mahasiswa Berdasarkan Garis Telapak Tangan Menggunakan Convolutional Neural Network,” J. Nas. Pendidik. Tek. Inform., vol. 11, no. 3, pp. 269–279, 2022, doi: 10.23887/janapati.v11i3.53721.

[12] K. Zhang, G. Xu, Y. K. Jin, G. Qi, X. Yang, and L. Bai, “Palmprint recognition based on gating mechanism and adaptive feature fusion,” Front. Neurorobot., vol. 17, 2023, doi: 10.3389/fnbot.2023.1203962.

[13] Fatmaauliazahra, Annisa, and N. Firmansyah, “Klasifikasi Citra Jenis Ikan Air Tawar dan Air Laut Menggunakan Algoritma CNN (Convolutional Neural Network),” J. Inform. Polinema, vol. 11, no. 4, pp. 495–502, 2025, doi: 10.33795/jip.v11i4.7600.

[14] Muslihati, S. Sahibu, and I. Taufik, “Implementation of the Convolutional Neural Network Algorithm for Classifying Types of Organic and Non-Organic Waste,” MALCOM Indones. J. Mach. Learn. Comput. Sci., vol. 4, no. 3, pp. 840–852, 2024.

[15] Mochammad Toyib, Tegar Decky Kurniawan Pratama, and Ibnu Aqil, “Penerapan Algoritma CNN Untuk Mendeteksi Tulisan Tangan Angka Romawi dengan Augmentasi Data,” Algoritm. J. Mat. Ilmu Pengetah. Alam, Kebumian dan Angkasa, vol. 2, no. 3, pp. 108–120, 2024, doi: 10.62383/algoritma.v2i3.69.

Unduhan

Diterbitkan

2026-01-15

Cara Mengutip

Edilia, F. N., Harahap, L. S., Utami, A., & Simbolon, Z. N. (2026). Analisis Algoritma Convolutional Neural Network (CNN) untuk Pengenalan Pola Tangan Berdasarkan Citra Garis Telapak Tangan. Cosmic Jurnal Teknik, 2(4), 180–186. https://doi.org/10.55537/cosmic.v2i4.1495

Terbitan

Bagian

Articles

Artikel Serupa

Anda juga bisa Mulai pencarian similarity tingkat lanjut untuk artikel ini.

Artikel paling banyak dibaca berdasarkan penulis yang sama