Penggantian Nozzle untuk Meningkatkan Daya Mesin Diesel Caterpillar C32 Penggerak Pompa Pemadam Kebakaran
DOI:
https://doi.org/10.55537/cosmic.v2i2.1242Keywords:
mesin diesel, injector, efisiensi mekanis, daya output, preventive maintenanceAbstract
Penelitian ini bertujuan untuk mengukur secara kuantitatif penurunan daya output dan peningkatan efisiensi mekanis pada mesin diesel Caterpillar C32 setelah pergantian nozzle injector. Mesin tersebut menggerakkan generator pompa kebakaran berkapasitas seribu kVA di PT Pertamina Gas ONSA, Medan. Data daya output dikumpulkan menggunakan dynamometer Schenck pada beban penuh sebelum dan sesudah pergantian injector genuine, masing-masing diukur tiga kali untuk memperoleh nilai rata-rata. Karakteristik pola semprot dan laju kebocoran injector lama diuji sesuai prosedur ISO 4008-1:1980 dan ISO 2974:2018 melalui spray-pattern test dan leakage test. Injector lama yang telah beroperasi selama sepuluh ribu delapan ratus jam menunjukkan penyempitan orifice akibat akumulasi deposit karbon sehingga daya output berkurang sebesar 129,81 HP (96,8 kW). Setelah penggantian injector, daya output meningkat dari 1765,95 HP menjadi 1895,76 HP dan efisiensi mekanis mencapai 93,15 persen. Analisis statistik menggunakan uji t-berpasangan menunjukkan perbedaan daya yang signifikan pada taraf signifikansi 0,05. Rekomendasi meliputi pengujian pola semprot dan flow-rate secara berkala setiap enam hingga delapan ribu jam operasi serta penggunaan solar ultra-low-sulfur dan aditif cetane improver.
Downloads
References
[1] X. Zhao, M. Pérez, and K. Müller, “Mechanisms of diesel injector deposit formation under varying fuel compositions,” Fuel, vol. 345, pp. 122–130, 2024.
[2] M. Pach, H. Hittig, J. Blomberg, H. Kusar, and S. Hruby, “Exploring the formation mechanisms of internal diesel injector deposits: A laboratory study,” Fuel, vol. 381, art. no. 133290, 2025.
[3] C. Qiu, Z. Chen, W. Zhou, S. Martynenko, and L. Yanovskiy, “Experimental investigation on carbon deposition characteristics of aeroengine swirl nozzle and its effect on spray behaviors,” Fuel, vol. 324, art. no. 124431, 2022.
[4] C. M. McGilvery, J. Jiang, N. J. Rounthwaite, R. Williams, F. Giuliani, and T. B. Britton, “Characterisation of carbonaceous deposits on diesel injector nozzles,” Fuel, vol. 274, art. no. 117629, 2020.
[5] R. D. Burke, M. Madamedon, and R. Williams, “Newly identified effects of injector nozzle fouling in diesel engines,” Fuel, vol. 278, art. no. 118336, 2020.
[6] Y. Lu, C. Fan, Y. Chen, Y. Liu, and Y. Pei, “Effect of injection strategy optimization on PCCI combustion and emissions under engine speed extension in a heavy-duty diesel engine,” Fuel, vol. 332, art. no. 126053, 2023.
[7] Y. Hu, J. Yang, and N. Hu, “Experimental study and optimization in the layouts and the structure of the high-pressure common-rail fuel injection system for a marine diesel engine,” International Journal of Engine Research, vol. 22, no. 6, pp. 1850–1871, 2021.
[8] W. Niklawy, M. Shahin, M. I. Amin, and A. Elmaihy, “Modelling and experimental investigation of high-pressure common rail diesel injection system,” IOP Conference Series: Materials Science and Engineering, vol. 973, no. 1, p. 012037, 2020.
[9] D. Aulin, O. Klymenko, A. Falendysh, O. Kletska, and J. Dizo, “Improvement of diesel injector nozzle test techniques,” IOP Conference Series: Materials Science and Engineering, vol. 985, no. 1, p. 012031, 2020.
[10] M. Mirshahi, In-nozzle flow spray characteristics in gasoline multi-hole injectors, Ph.D. dissertation, City University of London, 2020.
[11] I. Pielecha, Z. Stępień, F. Szwajca, and G. Kinal, “Effectiveness of butanol and deposit control additive in fuel to reduce deposits of gasoline direct injection engine injectors,” Energies, vol. 16, no. 1, p. 77, 2022.
[12] P. S. Ranjit, Z. Ahmed, S. S. Bhurat, V. B. Alur, E. P. Venkatesan, O. D. Samuel, and P. Sekar, “Comprehensive comparative study of the durability wear assessment of a diesel engine fuelled with Jatropha seed oil and diesel fuel and its troubleshooting and scheduled maintenance,” ACS Omega, vol. 9, no. 43, pp. 43331–43352, 2024.
[13] S. Aydın, “Comprehensive analysis of combustion, performance and emissions of power generator diesel engine fueled with different source of biodiesel blends,” Energy, vol. 205, p. 118074, 2020.
[14] M. Mobarra, M. Rezkallah, and A. Ilinca, “Variable speed diesel generators: Performance and characteristic comparison,” Energies, vol. 15, no. 2, p. 592, 2022.
[15] S. Vedachalam, N. Baquerizo, and A. K. Dalai, “Review on impacts of low sulfur regulations on marine fuels and compliance options,” Fuel, vol. 310, p. 122243, 2022.
[16] N. Sharma, W. D. Bachalo, and A. K. Agarwal, “Spray droplet size distribution and droplet velocity measurements in a firing optical engine,” Physics of Fluids, vol. 32, no. 2, 2020.
[17] W. Vera-Tudela, R. Haefeli, C. Barro, B. Schneider, and K. Boulouchos, “An experimental study of a very high-pressure diesel injector (up to 5000 bar) by means of optical diagnostics,” Fuel, vol. 275, p. 117933, 2020.
[18] S. Lee, C. Kim, S. Lee, J. Lee, and J. Kim, “Diesel injector nozzle optimization for high CNG substitution in a dual-fuel heavy-duty diesel engine,” Fuel, vol. 262, p. 116607, 2020.
[19] X. Yan, H. Feng, Z. Zhang, L. Wu, and W. Wang, “Investigation research of gasoline direct injection on spray performance and combustion process for free piston linear generator with dual cylinder configuration,” Fuel, vol. 288, p. 119657, 2021.
[20] M. Usman, M. K. Tariq, M. A. I. Malik, F. Riaz, B. Shboul, Y. Fouad, and M. I. Masood, “Multipurpose optimization of fuel injection parameters for diesel engine using response surface methodology,” Case Studies in Thermal Engineering, vol. 52, art. no. 103718, 2023.
[21] J. A. Cracknell, M. O. Smith, and L. T. Johnson, “Influence of injector nozzle cleanliness on particulate emissions,” Journal of Engine Maintenance, vol. 12, no. 4, pp. 233–240, 2023.
[22] Z. Stępień, I. Pielecha, and G. Kinal, “Injector deposit control strategies in modern diesel engines,” Energies, vol. 17, no. 2, art. no. 354, 2024.
[23] H. Tanaka, R. Suzuki, and Y. Kato, “High-pressure diesel injector nozzle design for improved combustion efficiency,” SAE Technical Paper 2022-01-0456, 2022.
[24] International Organization for Standardization, “Road vehicles – Fuel injection equipment testing – Part 1: General requirements,” ISO Standard 4008-1:1980, Geneva, Switzerland, 1980.
[25] International Organization for Standardization, “Diesel engines – Testing of fuel injectors,” ISO Standard 2974:2018, Geneva, Switzerland, 2018.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Muhammad Iqbal Harapan Muslim Siregar, Manahan Hutagalung, Kevin Salomo Sitorus, Abdillah Abdillah, Yanto Yanto, Karti Karti

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.