E-Commerce Consumer Data Clustering Using K-Means Algorithm And Kaggle Dataset
DOI:
https://doi.org/10.55537/cosie.v4i2.1123Keywords:
K-Means, Clustering, E-Commerce, Data Mining, Segmentasi Pelanggan, Dataset Kaggle.Abstract
Online shopping has become a part of people's lifestyle. This is because of the many conveniences obtained to meet primary to tertiary needs. The current condition, consumer purchase transaction history data has not been utilized optimally so that it is less effective. This makes the company feel that it has not been optimal in meeting customer expectations in increasing consumer loyalty. In addition, the current marketing strategy is also considered ineffective because the offers made by the company to each consumer are still general, the company has not offered products or promotions that are really needed by consumers. Through this study, the author tries to provide solutions to companies to increase the efficiency of marketing strategies that greatly influence increasing consumer loyalty by conducting clustering analysis of e-commerce consumer data. The purpose of this study is to design and create an application for clustering e-commerce consumer data using the k-means algorithm and the kaggle dataset. The data used in this study is e-commerce consumer data. The output results of solving the problem of clustering e-commerce consumer data. It can be seen based on the results of the payment data grouping for Cluster 1 (Electronic Payment): Total Payment: 72,000,000.00, Cluster 2 (Shoe Payment): Total Payment: 6,600,000.00, Cluster 3 (Clothing Payment): Total Payment: 2,940,000.00 and Cluster 4 (Cosmetic Payment): Total Payment: 105,000,000.00
Downloads
References
[1] A. S. Wijaya And J. F. Andry, “Perancangan Aplikasi E-Commerce Berbasis Android Pada Ud Hoky Celluler Shop,” J. Teknoinfo, Vol. 15, No. 2, P. 97, 2021, Doi: 10.33365/Jti.V15i2.1065.
[2] J. P. Sutrisno And N. Anwar, “Rancang Bangun Aplikasi E-Commerce Berbasis Web Pada Toko Vapein,” Ikra-Ith Inform. J. Komput. Dan Inform., Vol. 7, No. 3, Pp. 32–39, 2023, Doi: 10.37817/Ikraith-Informatika.V7i3.3048.
[3] A. Adiyanto And Y. Arie Wijaya, “Penerapan Algoritma K-Means Pada Pengelompokan Data Set Bahan Pangan Indonesia Tahun 2022-2023,” Jati (Jurnal Mhs. Tek. Inform., Vol. 7, No. 2, Pp. 1344–1350, 2023, Doi: 10.36040/Jati.V7i2.6849.
[4] M. Norshahlan, H. Jaya, And R. Kustini, “Penerapan Metode Clustering Dengan Algoritma K-Means Pada Pengelompokan Data Calon Siswa Baru,” J. Sist. Inf. Triguna Dharma (Jursi Tgd), Vol. 2, No. 6, P. 1042, 2023, Doi: 10.53513/Jursi.V2i6.9148.
[5] Z. F. Jalil Abdul, Ahmad Homaidi, “Implementasi Algoritma Support Vector Machine Untuk Klasifikasi Status Stunting Pada Balita,” Vol. 8, No. 3, Pp. 2070–2079, 2024.
[6] D. A. Manalu, G. Gunadi, And T. Informatika, “Implementasi Metode Data Mining K-Means Clustering Terhadap Data Pembayaran Transaksi Menggunakan Bahasa Pemrograman Python Pada Cv Digital Dimensi,” Vol. 8, No. 1, Pp. 45–54, 2022.
[7] A. Rahman And H. Suroyo, “Analisis Data Produk Elektronik Di E-Commerce Dengan Metode Algoritma K-Means Menggunakan Python,” Vol. 3, No. 2, Pp. 11–18, 2021.
[8] S. F. Florentin And A. Santoso, “Analisis Segmentasi Pelanggan Menggunakan K- Means,” Vol. 26, No. 2, Pp. 446–457, 2022, Doi: 10.46984/Sebatik.V26i2.2134.
[9] R. Maoulana, B. Irawan, And A. Bahtiar, “Data Mining Dalam Konteks Transaksi Penjualan Hijab Dengan Menggunakan Algoritma Clustering K-Means,” Jati (Jurnal Mhs. Tek. Inform., Vol. 8, No. 1, Pp. 515–521, 2024, Doi: 10.36040/Jati.V8i1.8504.
[10] N. M. A. K. Lenama And I. G. Pasangka, “K-Means Clustering Analysis Pada Pengelompokan Kabupaten/Kota Di Provinsi Nusa Tenggara Timur Berdasarkan Indikator Pendidikan,” vol. 08, no. 9, pp. 3365–3376, 2023.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Ade Eka Sabrina, Muhammad Yasin

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.