Sentiment Analysis of Triv Application Reviews using Support Vector Machine Algorithm

Authors

  • Sunario Megawan Universitas Mikroskil
  • Hernawati Gohzali Universitas Mikroskil
  • Ferry Halim Universitas Mikroskil
  • Harry Ramadhan Universitas Mikroskil
  • Desy Okatvia Sitepu Universitas Mikroskil

DOI:

https://doi.org/10.55537/cosie.v4i3.1223

Keywords:

Analisis sentimen, Support Vector Machine, Triv

Abstract

The growing popularity of the Triv application as a cryptocurrency transaction platform in Indonesia has generated various user reviews that reflect perceptions of service quality. This study focuses on exploring user opinions through sentiment analysis techniques employing a classification approach based on the Support Vector Machine (SVM) algorithm. The data, sourced from user reviews on the Google Play Store, is analyzed through a series of systematic stages, including sentiment labeling, text preprocessing, feature extraction, model construction, and performance evaluation of the resulting classifier. The experimental results show that SVM can accurately identify sentiment polarity, achieving an accuracy rate of 96%. These findings highlight the potential of machine learning approaches in understanding user perceptions of digital financial applications.

Downloads

Download data is not yet available.

References

[1] Sumartini, D., & Wisudawati, L. M. (2024). Analisis Sentimen pada Ulasan Aplikasi Tokocrypto dengan SVM pada Google Play, Jurnal Ilmiah Informatika Komputer, 29(3).

[2] Prasetyo, E., & Kusumawati, S. (2023). Marketplace Analisis Sentimen dengan SVM, Jurnal e-Commerce, 7(2).

[3] Rahayu, N., & Santoso, B. (2024). Sentimen Kesehatan Mental di Play Store pakai SVM, Jurnal Kesehatan Digital, 3(2).

[4] Dewi, S., & Widianto, R. (2022). Text Mining Sentimen Media Sosial dengan SVM, Jurnal Komputer dan Informatika, 8(4).

[5] Budi, T., & Rizky, A. (2023). Analisis Sentimen Transportasi Online di Indonesia menggunakan Text Mining, Jurnal Sistem Informasi, 9(1).

[6] Sidabutar, T. G. W. M., & Juardi, D. (2025). Analisis Sentimen Telemedicine Halodoc menggunakan SVM, Jurnal Informatika Elektro Terapan, 13(1).

[7] Akbar, T., & Imanda, R. (2024). Analisis Sentimen Transportasi Lokal dengan TF‑IDF + SVM, Jurnal Sistem Informasi Lokal, 2(1).

[8] Hasan, Z., & Indah, P. (2023). Sentimen Aplikasi Keuangan Digital dengan TF‑IDF dan SVM, Jurnal Manajemen Informasi, 11(2).

[9] Gina, K., & Hendra, S. (2022). Sentimen Aplikasi Edukasi Play Store dengan Naïve Bayes dan SVM, Jurnal Edukasi Teknologi, 6(3).

[10] Iqbal, R., & Jannah, S. (2023). Layanan Digital Pemerintah: TF‑IDF + SVM, Jurnal TI Pemerintahan, 4(1).

[11] Yolanda, E. T., Junaedi, L., & Gumelar, A. B. (2022). Analisis Sentimen Harga Kripto dengan TextBlob‑NLTK, Jurnal Linguistik Komputasional, 5(2).

[12] Fadli, M., & Sandra, L. (2022). Sentimen Pembayaran Digital dengan RF, Jurnal e-Commerce Teknologi, 5(1).

[13] Malik, A., & Nugroho, R. (2023). Sentimen Tokocrypto dengan SVM (>90% akurat), Jurnal Aplikasi Teknologi, 14(4).

[14] Dewanti, R., & Iskandar, A. (2022). Marketplace dan Layanan UMKM: Sentimen SVM, Jurnal Teknologi UMKM, 4(4).

Downloads

Published

18-07-2025

How to Cite

Megawan, S., Gohzali, H., Halim, F., Ramadhan, H., & Sitepu, D. O. (2025). Sentiment Analysis of Triv Application Reviews using Support Vector Machine Algorithm. Journal of Computer Science and Informatics Engineering , 4(3), 188–200. https://doi.org/10.55537/cosie.v4i3.1223

Issue

Section

Articles