Application of The K-Means Algorithm to Tetermine the Level of Motor Vehicle Tax Payer Compiance at UPT Samsat Medan Selatan
DOI:
https://doi.org/10.55537/cosie.v2i4.711Keywords:
Clustering; Data Mining; K-Means; Taxpayer ComplianceAbstract
Taxpayer compliance is an action that shows obedience and order to tax obligations by making tax payments and reporting taxes periodically by the relevant taxpayer in accordance with applicable tax regulations. The group of motorized vehicle presence at the South Medan Samsat is divided into several levels, from lowest to highest. The amount of motor vehicle tax contributions depends on the calculation and payment of tax owed on the income earned by the taxpayer and payment of tax arrears before autumn. The aim of this research is to determine the level of motor vehicle tax compliance in South Medan Sammsat in 2023. The research method used is the K-Means algorithm with the Clustering method. The K-Means algorithm uses the KDD stage with a total of 146 data in the form of motor vehicle tax payment data at the South Medan samsat in 2023. RapidMiner test results using the Davies-Bouldin Index calculation give a cluster determination value of 0.294. Cluster 0 contains 10 taxpayers with very low levels of compliance, cluster 1 contains 56 taxpayers with medium levels of compliance, cluster 2 contains 19 taxpayers with low levels of compliance, cluster 3 contains 61 taxpayers with high levels of compliance
Downloads
References
Siahaan, Marihot P. (2013). Pajak Daerah dan Retribusi Daerah, Jakarta : Raja Grafindo
Kusumawati, I. N., & Rachman, A. N. (2021). Analisis Pengaruh Wajib Pajak dalam Membayar Pajak Kendaraan Bermotor. Jurnal Ekonomi-QU, 11(1), 1–20.
I. Irwan, S. Sidjara, and A. P. Aryati. (2022). Pengelompokan Jenis Penerimaan Pajak di Kota Makassar Menggunakan Fuzzy Clustering. Euler J. Ilm. Mat. Sains dan Teknol., vol. 10, no. 1. 98–102
Sari, Desti Puspita, Shofa Shofia Hilabi, and Agustia Hananto. (2023). Penerapan Data Mining Metode K-Nearest Neighbor Untuk Memprediksi Kelulusan Siswa Sekolah Menengah Pertama. SMARTICS Journal 9.1: 14-19.
Nasution, M. Z., & Hasibuan, M. S. (2020). Pendekatan Initial Centroid Search Untuk Meningkatkan Efisiensi Iterasi Klustering K-Means. Techno. Com, 19(4), 341-352.
Dhuhita, W. M. P. (2015). CLUSTERING MENGGUNAKAN METODE K MEANS UNTUK MENENTUKAN STATUS GIZI BALITA, 15(2).
Mukmin, M. N., & Maemunah, S. (2019). Pengelolaan Dana Pemerintah Desa: Kajian Pada Kecamatan Babakan Madang, Sukaraja Dan Ciawi. Jurnal Akunida, 4(2), 73-85.
F. Farahdinna, I. Nurdiansyah, A. Suryani, and A. Wibowo. (2019). Perbandingan Algoritma K-Means dan K-Medoids dalam Klasterisasi Produk Asuransi Perusahaan Nasional. Jurnal Ilmiah FIFO. vol. 11, no. 2, p. 208
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Dini Asti, Muhammad Siddik Hasibuan, Putri Aprilia Siregar

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.