Clustering of Inpatients at USU Hospital Using The K-means Algorithm

Authors

  • Isna Damaiani Iskandar Universitas Islam Negeri Sumatra Utara
  • Ilka Zufria Universitas Islam Negeri Sumatera Utara

DOI:

https://doi.org/10.55537/cosie.v3i2.768

Keywords:

Clustering, K-Means, Rapid Miner

Abstract

This study aims to identify patterns of differences in the characteristics of inpatients at the North Sumatra University Hospital (USU Hospital) based on Social Security Administering Body (BPJS) class using the k-means algorithm approach. The data used in this study involves the number of patients with different BPJS classes during a certain period. The data analysis method uses the k-means algorithm to form groups of similar patients based on relevant variables, such as diagnosis, responsible doctor, and insurer. It is hoped that the results of the cluster analysis will provide a deeper understanding of the characteristic patterns of inpatients with different BPJS classes at USU Hospital. The findings from this research can provide valuable information for hospitals and the Social Security Administration in managing resources, planning health services, and improving service quality. In addition, this research can also provide a basis for the development of more effective personalized patient care strategies according to the needs of specific patient groups. By using this approach, it is hoped that this research can make a positive contribution to the efficient management of health resources, improve the quality of health services, and provide a basis for further research in the context of cluster analysis of inpatients with different health insurance groups

Downloads

Download data is not yet available.

References

S. Muawanah, U. Muzayanah, M. G. R. Pandin, M. D. S. Alam, and J. P. N. Trisnaningtyas, “Stress and Coping Strategies of Madrasah’s Teachers on Applying Distance Learning During COVID-19 Pandemic in Indonesia,” Qubahan Acad. J., vol. 3, no. 4, pp. 206–218, 2023, doi: 10.48161/Issn.2709-8206.

F. Handayani, “Aplikasi Aplikasi Data Mining Menggunakan Algoritma K-Means Clustering untuk Mengelompokan Mahasiswa Berdasarkan Gaya Belajar,” J. Teknol. dan Inf., vol. 12, no. 1, pp. 46–63, 2022, doi: 10.34010/jati.v12i1.6733.

A. A. Aldino, D. Darwis, A. T. Prastowo, and C. Sujana, “Implementation of K-Means Algorithm for Clustering Corn Planting Feasibility Area in South Lampung Regency,” J. Phys. Conf. Ser., vol. 1751, no. 1, 2021, doi: 10.1088/1742-6596/1751/1/012038.

H. Priyatman, F. Sajid, and D. Haldivany, “Klasterisasi Menggunakan Algoritma K-Means Clustering untuk Memprediksi Waktu Kelulusan Mahasiswa,” J. Edukasi dan Penelit. Inform., vol. 5, no. 1, p. 62, 2019, doi: 10.26418/jp.v5i1.29611.

M. Mughnyanti, S. Efendi, and M. Zarlis, “Analysis of determining centroid clustering x-means algorithm with davies-bouldin index evaluation,” IOP Conf. Ser. Mater. Sci. Eng., vol. 725, no. 1, 2020, doi: 10.1088/1757-899X/725/1/012128.

E. Ainun Novia, W. Isti Rahayu, and S. Fachri Pane, “Implementasi Algoritma K-Means Clustering Tingkat Kepentingan Tagihan Rumah Sakit Di Pt Pertamina (Persero),” Jl. Sariasih, vol. 54, p. 40151, 2020.

C. Pratiwi, S. Solin, and M. K. Zega, “Penilaian Pasien Rawat Inap Terhadap Pelayanan Makanan Instalasi Gizi RS. USU,” Pontianak Nutr. J., vol. 5, no. 1, pp. 171–176, 2022, [Online]. Available: http://ejournal.poltekkes-pontianak.ac.id/index.php/PNJ/index

R. Dewi and E. Israhadi, “Legal Aspects of BPJS as National Health Insurance,” 2021, doi: 10.4108/eai.6-3-2021.2306412.

Pandi Rais, Shahrul bin Abd Shofi, Erina Sonia, and Sulis Setyoningsih, “the Islamic Law Review on Management of the Social Security Organizing Agency (Bpjs),” Qawãnïn J. Econ. Syaria Law, vol. 4, no. 2, pp. 177–192, 2020, doi: 10.30762/q.v4i2.2469.

A. Purba, “Psychological Effect Of Bpjs Health Social Security participation In Perdagangan City Community,” no. January 2014, pp. 3–7, 2020, doi: 10.4108/eai.14-3-2019.2291962.

I. Nuryani and D. Darwis, “Analisis clustering pada pengguna brand hp menggunakan metode k-means,” vol. 1, no. 1, pp. 190–211, 2021.

Y. W. Syaifudin and R. A. Irawan, “Implementasi Analisis Clustering Dan Sentimen Data Twitter Pada Opini Wisata Pantai Menggunakan Metode K-Means,” J. Inform. Polinema, vol. 4, no. 3, p. 189, 2018, doi: 10.33795/jip.v4i3.205.

L. G. Rady Putra and A. Anggrawan, “Pengelompokan Penerima Bantuan Sosial Masyarakat dengan Metode K-Means,” MATRIK J. Manajemen, Tek. Inform. dan Rekayasa Komput., vol. 21, no. 1, pp. 205–214, 2021, doi: 10.30812/matrik.v21i1.1554.

N. F. Adani et al., “Implementasi Data Mining Untuk Pengelompokan Data Penjualan Berdasarkan Pola Pembelian Menggunakan Algoritma K-Means Clustering Pada Toko Syihan,” J. Cyber Tech, vol. x. No.x, no. x, pp. 1–11, 2019, [Online]. Available: https://ojs.trigunadharma.ac.id/index.php/jct/article/view/4648%0Ahttps://ojs.trigunadharma.ac.id/index.php/jct/article/download/4648/791

B. Harahap, “Penerapan Algoritma K-Means Untuk Menentukan Bahan Bangunan Laris (Studi Kasus Pada UD. Toko Bangunan YD Indarung),” Reg. Dev. Ind. Heal. Sci. Technol. Art Life, pp. 394–403, 2019, [Online].

Available: https://ptki.ac.id/jurnal/index.php/readystar/article/view/82

C. Zhang, J. Wang, X. Li, F. Fu, and W. Wang, “Clustering Centroid Selection using a K-means and Rapid Density Peak Search Fusion Algorithm,” Proc. IEEE Int. Conf. Softw. Eng. Serv. Sci. ICSESS, vol. 2020-Octob, pp. 201–207, 2020,

doi: 10.1109/ICSESS49938.2020.9237746.

Downloads

Published

02-05-2024

How to Cite

Iskandar, I. D., & Zufria, I. (2024). Clustering of Inpatients at USU Hospital Using The K-means Algorithm. Journal of Computer Science and Informatics Engineering , 3(2), 54–63. https://doi.org/10.55537/cosie.v3i2.768

Issue

Section

Articles