Implementation of Huffman Compression for Optimizing Sensor Data Delivery in IoT Monitoring Systems
DOI:
https://doi.org/10.55537/cosie.v5i1.1355Keywords:
Kompresi Huffman, Optimasi Pengiriman Data, Jaringan Wireless Terbatas, Protokol ZigBee, Internet of Things (IoT)Abstract
Real-time data transmission in Internet of Things (IoT) environments often faces limitations in bandwidth and energy efficiency, leading to latency during continuous data transfer. This study conducts a ZigBee-based simulation using Python to evaluate data compression efficiency in IoT sensor communication systems. The transmitted data are collected from four types of sensors temperature, pressure, humidity, and vibration with a total of 100 records generated randomly to represent ideal industrial environmental conditions. The Huffman Compression method is applied to reduce the size of sensor measurement data before transmission. Simulation results show that the total data length was reduced from 27,632 bits to 13,385 bits, achieving a 51.56% reduction. Consequently, the average transmission time decreased from 0.11053s to 0.0535s, and energy consumption dropped from 0.001382 J to 0.000669 J. In addition, bandwidth usage was reduced from 27.63kb to 13.38kb. These results indicate that applying Huffman Compression can significantly enhance transmission efficiency, reduce energy consumption, and optimize bandwidth utilization in ZigBee-based IoT communication systems.
Downloads
References
[1] I. Nassra and J. V Capella, “Data compression techniques in IoT-enabled wireless body sensor networks: A systematic literature review and research trends for QoS improvement,” Internet of Things, vol. 23, p. 100806, 2023, doi: https://doi.org/10.1016/j.iot.2023.100806.
[2] M. Mutiarani and R. R. Ritonga, “IoT LED Control System Implementation and Optimization Using Wi-Fi Through a Telegram Bot,” J. Comput. Sci. Informatics Eng., vol. 4, no. 1, pp. 10–20, 2025, doi: https://doi.org/10.55537/cosie.v4i1.959.
[3] L. Uziah, L. D. Samsumar, and A. Subki, “Penerapan Internet of Things (IoT) untuk Pemantauan dan Pengendalian Otomatis Pemupukan Tanaman Bawang Merah di Desa Perampuan,” J. Comput. Sci. Informatics Eng., vol. 3, no. 4, pp. 199–210, 2024, doi: https://doi.org/10.55537/cosie.v3i4.946.
[4] A. Ghosh, A. Raha, and A. Mukherjee, “Energy-Efficient IoT-Health Monitoring System using Approximate Computing,” Internet of Things, vol. 9, p. 100166, 2020, doi: https://doi.org/10.1016/j.iot.2020.100166.
[5] S. Al Fallah, M. Arioua, and A. El Oualkadi, “Lightweight Secure Compression Scheme for Green IoT Applications,” Procedia Comput. Sci., vol. 236, pp. 363–370, 2024, doi: https://doi.org/10.1016/j.procs.2024.05.042.
[6] L. D. Samsumar, A. Subki, and A. Akbar, “Pemanfaatan Teknologi Iot Dalam Sistem Pemupukan Otomatis Untuk Meningkatkan Efisiensi Dan Produktivitas Tanaman Tembakau,” J. Comput. Sci. Informatics Eng., vol. 3, no. 4, pp. 170–183, 2024, doi: https://doi.org/10.55537/cosie.v3i4.933.
[7] J. N. Jakawa, F. Gonten, D. U. Emmanuel, D. A. Pandok, and P. C. Maikano, “Systematic Survey Analysis of the Application of Artificial Intelligence Base Network on Grid Computing Techniques,” J. Inf. Syst. Technol. Res., vol. 3, no. 3, pp. 125–135, 2024, doi: https://doi.org/10.55537/jistr.v3i3.908.
[8] M. J. Khani and Z. Shirmohammadi, “UEELC: An Ultra Energy Efficient Lossless Compression Method for Wireless Body Area Networks,” in 2020 6th Iranian Conference on Signal Processing and Intelligent Systems (ICSPIS), 2020, pp. 1–7. doi: 10.1109/ICSPIS51611.2020.9349604.
[9] H. Mohammadi, A. Ghaderzadeh, and A. Sheikh Ahmadi, “A Novel Hybrid Medical Data Compression Using Huffman Coding and LZW in IoT,” IETE J. Res., vol. 69, no. 11, pp. 7831–7845, Nov. 2023, doi: 10.1080/03772063.2022.2052985.
[10] L. K. Ketshabetswe, A. M. Zungeru, C. K. Lebekwe, and B. Mtengi, “Energy-efficient Algorithms for lossless Data Compression Schemes in Wireless Sensor Networks,” Sci. African, vol. 23, p. e02008, 2024, doi: https://doi.org/10.1016/j.sciaf.2023.e02008.
[11] A. S. Nasif, Z. A. Othman, N. S. Sani, M. K. Hasan, and Y. Abudaqqa, “Huffman Deep Compression of Edge Node Data for Reducing IoT Network Traffic,” IEEE Access, vol. 12, pp. 122988–122997, 2024, doi: 10.1109/ACCESS.2024.3452669.
[12] E. Guguloth, S. Vadtya, T. Kudithi, M. R. Shanmugam, and A. N. Banoth, “FPGA implementation of high throughput encoder and decoder design of lossless canonical Huffman machine,” Results Eng., vol. 26, p. 105037, 2025, doi: https://doi.org/10.1016/j.rineng.2025.105037.
[13] S. A. Babu, R. J. S. Raj, A. X. VM, and N. Muthukumaran, “DCT based Enhanced Tchebichef Moment using Huffman Encoding Algorithm (ETMH),” in 2021 Third International Conference on Intelligent Communication Technologies and Virtual Mobile Networks (ICICV), 2021, pp. 522–527.
[14] T. A. Selian, N. Akbar, and M. I. Hidayat, “Image Classification Based On Color Using Thresholding Method,” JITCoS J. Inf. Technol. Comput. Syst., vol. 1, no. 1, pp. 1–6, 2025.
[15] Z. H. Sain, H. H. Loupias, R. A. Susanti, R. Serban, and C. C. Thelma, “Innovative Integration of Computer Network Technology in Modern Educational Systems,” J. Inf. Syst. Technol. Res., vol. 3, no. 3, pp. 117–124, 2024, doi: https://doi.org/10.55537/jistr.v3i3.902.
[16] A. Nugroho and N. F. Rahmadani, “Web-based Visit List Information System at the Ministry of Religious Affairs of Deli Serdang Regency,” J. Metrokom Media Tek. Elektro dan Komput., vol. 1, no. 2, pp. 58–74, 2024, doi: https://doi.org/10.1307/metrokom.v1i2.79.
[17] R. A. Yahya, R. A. Siregar, and B. A. Sitompul, “Application of K-Means Cluster Algorithm to Determine Student Achievement,” JITCoS J. Inf. Technol. Comput. Syst., vol. 1, no. 1, pp. 16–24, 2025.
[18] F. Aulia, D. Suryandi, and J. Nainggolan, “Implementation of Finite State Automata on Pizza Vending Machine System,” JITCoS J. Inf. Technol. Comput. Syst., vol. 1, no. 1, pp. 7–15, 2025.
[19] C.-C. Chen, C.-C. Chang, and K. Chen, “High-capacity reversible data hiding in encrypted image based on Huffman coding and differences of high nibbles of pixels,” J. Vis. Commun. Image Represent., vol. 76, p. 103060, 2021.
[20] M. Meftah, A. A. Pacha, and N. Hadj-Said, “DNA encryption algorithm based on Huffman coding,” J. Discret. Math. Sci. Cryptogr., vol. 25, no. 6, pp. 1831–1844, 2022.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 M Khalil Gibran, Mhd Ikhsan Rifki, Afandi Sahputra, Ahmad Taufik Al Afkari Siahaan

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.



