Multiparameter Soil Fertility Monitoring System in Agriculture Based on the Internet of Things
DOI:
https://doi.org/10.55537/cosie.v5i1.1358Keywords:
Sistem Monitoring, Kesuburan Tanah, Internet of Things, Multiparameter TanahAbstract
The research aims to implement an IoT-based system for monitoring soil fertility that integrates multiparameter sensors to track pH, temperature, soil moisture, EC, N, P, and K through an end-to-end data flow design for analysis using data visualization media. The system architecture consists of ESP32 as the center and control for data acquisition and transmission, a data history recording channel through Google Spreadsheets, mini OLED visualization, and a web dashboard for interactive analytics. Data is sent to the Google Apps Script backend via HTTP requests accompanied by a time zone-based timestamp. The system also implements validation using CRC 16 numerical computation to ensure data consistency as part of error checking. On the web channel, there are two layers of visualization: a KPI panel showing the latest values for seven parameters, each with a time series graph. The testing focused on connection and sensor integration with ESP32, network communication system connectivity, and access using several devices. The results of the study show that the system is capable of visualizing data on multiple fertility measurements. Thus, fertilizer application analysis is not based on practitioner experience but supports data-driven decision-making. The study provides a foundation for further evaluation of the relative accuracy of sensors, the success of data recording, and aspects of visualization according to the needs of stakeholders in the agricultural sector
Downloads
References
[1] M. Rizon, B. A. Serawai, M. Romdhon, S. P. Utama, and D. S. Lucia, “Menakar Pertanian Anorganik Dan Keberlanjutan Lingkungan Hidup Di Indonesia ‘ Sebuah Kajian Kritis ,’” vol. 1, no. 2, pp. 33–40, 2025.
[2] I. Fatimatuzzahra, F. E. A. Utami, and A. Mardliyah, “Review Literatur melalui Publish or Perish pada Pembuatan Pupuk Organik Cair sebagai Alternatif Proyek dalam Kurikulum Merdeka,” Soc. Humanit. Educ. Stud. Conf. Ser., vol. 7, no. 4, pp. 290–306, 2023.
[3] S. Nuchhi, V. Bagali, and S. Annigeri, “IOT Based Soil Testing Instrument For Agriculture Purpose,” in 2020 IEEE Bangalore Humanitarian Technology Conference (B-HTC), 2020, pp. 1–4. doi: 10.1109/B-HTC50970.2020.9297897.
[4] J. Wang, Z. Liu, X. Yang, M. Li, and Z. Lyu, “The Internet of Things under Federated Learning: A Review of the Latest Advances and Applications,” Comput. Mater. Contin., vol. 82, no. 1, pp. 1–39, 2025, doi: https://doi.org/10.32604/cmc.2024.058926.
[5] I. Markit, “Number of connected iot devices will surge to 125 billion by 2030,” numberconnected-iot-devices-will-surge-125-billion-2030-ihsmarkit-say, 2020.
[6] L. Syed, “Smart Agriculture using Ensemble Machine Learning Techniques in IoT Environment,” Procedia Comput. Sci., vol. 235, pp. 2269–2278, 2024, doi: https://doi.org/10.1016/j.procs.2024.04.215.
[7] V. Kumar, K. Vaibhav, N. Kedam, A. Patel, T. Ram, and U. Rathnayake, “Smart Agricultural Technology A comprehensive review on smart and sustainable agriculture using IoT technologies,” Smart Agric. Technol., vol. 8, no. February, p. 100487, 2024, doi: 10.1016/j.atech.2024.100487.
[8] J. Aliparo et al., “IoT-based Assessment and Monitoring of NPK Content and Fertility Condition of Soil,” in TENCON 2022 - 2022 IEEE Region 10 Conference (TENCON), 2022, pp. 1–6. doi: 10.1109/TENCON55691.2022.9978040.
[9] G. S. Pravallika, L. Kundana, K. S. Thanvi, G. Sirisha, and C. Rupa, “Proficient Smart Soil based IoT System for Crop Prediction,” in 2020 Second International Conference on Inventive Research in Computing Applications (ICIRCA), 2020, pp. 752–757. doi: 10.1109/ICIRCA48905.2020.9183054.
[10] M. Idris, “Terlalu Banyak Pupuk Kimia, 72 Persen Lahan Pertanian RI Kini Kritis,” 2022.
[11] H. M. Kaidi et al., “Internet of Things : A Monitoring and Control System for Rockmelon Farming,” vol. 6, pp. 55–61, 2020.
[12] A. Mahmudin, K. Auliasari, F. T. Industri, and I. O. Things, “Penerapan IoT ( Internet of Thing ) Terhadap Sistem Pendeteksi Kesuburan Tanah Pada Lahan Perkebunan,” vol. 4, no. 2, pp. 207–213, 2020.
[13] R. R. Wijayanti et al., “Implementasi Internet Of Things Pada Monitoring Kesuburan,” vol. 7, no. 1, pp. 97–103, 2023.
[14] A. Morchid, R. Jebabra, H. M. Khalid, R. El, H. Qjidaa, and M. Ouazzani, “Results in Engineering IoT-based smart irrigation management system to enhance agricultural water security using embedded systems , telemetry data , and cloud computing,” Results Eng., vol. 23, no. July, p. 102829, 2024, doi: 10.1016/j.rineng.2024.102829.
[15] M. Ismail, R. K. Abdullah, and S. Abdussamad, “Tempat Sampah Pintar Berbasis Internet of Things (IoT) Dengan Sistem Teknologi Informasi,” Jambura J. Electr. Electron. Eng., vol. 3, no. 1, pp. 7–12, 2021.
[16] S. Abdussamad, “Rancang Bangun Inverter Mini 1.5 Vdc to 220 Vac Untuk Lampu Darurat,” J. Tek., vol. 18, no. 1, pp. 7–16, 2020.
[17] E. Alfonsius, W. W. Kalengkongan, and S. C. W. Ngangi, “Sistem Monitoring Dan Kontroling Prototype Penyiram Tanaman Otomatis Berbasis IoT (Internet Of Things),” J. Teknoinfo, vol. 18, no. 1, pp. 44–55, 2024.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Mhd Ikhsan Rifki, Fitra Hidayat Lubis

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.



