Rice Leaf Disease Classification Based on Convolutional Neural Network Transfer Learning Using MobileNetV2 and EfficientNetB0

Authors

  • Nuranissa D. Paemo Universitas Ichsan Gorontalo Utara
  • Abdul Rahman Ismail Universitas Negeri Gorontalo
  • Rusni Harun Universitas Ichsan Gorontalo Utara

DOI:

https://doi.org/10.55537/cosie.v5i1.1371

Keywords:

Penyakit Daun Padi, Klasifikasi, CNN, MobileNetV2, EfficientNetB0

Abstract

Rice is a strategic commodity that plays a vital role in Indonesia’s national food security. Conventional identification of rice diseases, which relies on direct visual inspection, has several limitations; therefore, developing an automated identification system using Transfer Learning–based Convolutional Neural Networks (CNNs) has become increasingly important. This study employs MobileNetV2 and EfficientNetB0 architectures to compare the performance of both models in classifying rice leaf diseases. The dataset consists of 2,756 images obtained from Kaggle, with 690 images used for validation and 383 images for testing, classified into six categories of rice leaf conditions. These categories include five disease classes—Bacterial Leaf Blight, Brown Spot, Leaf Blast, Leaf Scald, and Sheath Blight—and one healthy leaf class. Preprocessing stages include pixel normalization, data augmentation, and resizing to 224×224 pixels. Model training was conducted for 20 epochs using a learning rate of 0.001 with the Adam optimizer. Evaluation results show that MobileNetV2 achieved an accuracy of 83.29%, precision of 87.20%, recall of 76.50%, and an F1-score of 82.87%. In comparison, EfficientNetB0 achieved an accuracy of 86.95%, precision of 90.00%, recall of 80.15%, and an F1-score of 86.78%. These findings highlight that although both models perform effectively for rice disease classification, EfficientNetB0 consistently provides a superior margin of approximately 3–4% across all metrics, making it a more stable choice for accurate early detection of rice leaf diseases. This study contributes to accelerating the identification process and supporting decision-making in the agricultural sector.

Downloads

Download data is not yet available.

References

[1] R. K. Rita Rahim, Ani Dela, Rosiana Nurfalah, Yulia Anggraeni, Sanjiwan Pasaribu, Nabila Dwi Utami, “Dinamika Ketahanan Pangan: Analisis Pengaruh Luas Panen Padi, Konsumsi Beras, Harga Beras, dan Jumlah Penduduk Terhadap Produksi Padi di Wilayah Sentra Padi di Indonesia Tahun 2017-2021,” Innov. J. Soc. Sci. Res., vol. 4, no. 3, pp. 17083–17093, 2024, [Online]. Available: https://j-innovative.org/index.php/Innovative/article/view/12524

[2] J. Algoritme et al., “Penerapan Algoritma K-Nearest Neighbor Dalam Klasifikasi Penyakit Daun Padi Menggunakan Ekstraksi HOG 1,2,3,” vol. 5, no. 3, 2025, doi: 10.35957/algoritme.v6i1.12154.

[3] A. Y. Ani Widart, Anik Kurniat, “Prakiraan Serangan Opт Utama Padi, Jagung, Kedelai, Aneka Касаng Dan Umbi Di Indonesia MT 2024/2025,” 2024, [Online]. Available: https://bdsp2.pertanian.go.id/siperditan/rekomenpdf/opttp/BUKU PRAKIRAAN OPT PANGAN MT 2024-2025 FINAL.pdf

[4] T. Febriyanto and S. Syofian, “Implementasi Deep Learning Menggunakan Vision Transformer Untuk Klasifikasi Penyakit Daun Padi,” J. TIFDA (Technology Inf. Data Anal., vol. 1, no. 2, pp. 34–39, Dec. 2024, doi: 10.70491/tifda.v1i2.47.

[5] M. F. A. Maulana, N. M. Anggadimas, and D. A. Sani, “Klasifikasi Citra Penyakit Daun Padi Dengan Metode CNN Menggunakan Arsitektur ResNet50V2,” CESS (Journal Comput. Eng. Syst. Sci., vol. 10, no. 2, pp. 517–529, Jul. 2025, doi: 10.24114/cess.v10i2.66960.

[6] N. Farihah, “Deteksi Dini Penyakit Daun Padi Menggunakan Integrasi Glcm Dan KNN,” J. Inform. dan Tek. Elektro Terap., vol. 13, no. 3, Jul. 2025, doi: 10.23960/jitet.v13i3.6543.

[7] M. Khoiruddin, A. Junaidi, and W. A. Saputra, “Klasifikasi Penyakit Daun Padi Menggunakan Convolutional Neural Network,” J. Dinda Data Sci. Inf. Technol. Data Anal., vol. 2, no. 1, pp. 37–45, Feb. 2022, doi: 10.20895/dinda.v2i1.341.

[8] H. M. Yusuf, S. A. Yusuf, A. H. Abubakar, M. Abdullahi, and I. H. Hassan, “A systematic review of deep learning techniques for rice disease recognition: Current trends and future directions,” Franklin Open, vol. 8, p. 100154, Sep. 2024, doi: 10.1016/j.fraope.2024.100154.

[9] E. Ramadhan, S. Akbar, M. F. Al-farizi, T. Agustin, and P. Informatika, “Klasifikasi Tingkat Keparahan Penyakit Leaf Blast Pada Tanaman Padi Menggunakan Efficientnetb0 Menggunakan,” no. November, pp. 429–440, 2024.

[10] M. Rijal, A. M. Yani, and A. Rahman, “Deteksi Citra Daun untuk Klasifikasi Penyakit Padi menggunakan Pendekatan Deep Learning dengan Model CNN,” J. Teknol. Terpadu, vol. 10, no. 1, pp. 56–62, Jul. 2024, doi: 10.54914/jtt.v10i1.1224.

[11] I. F. Annur, J. Umami, M. N. Annafii, N. Trisnaningrum, and O. V. Putra, “Klasifikasi Tingkat Keparahan Penyakit Leafblast Tanaman Padi Menggunakan MobileNetv2,” Fountain Informatics J., vol. 8, no. 1, pp. 7–14, May 2023, doi: 10.21111/fij.v8i1.9419.

[12] E. Anggiratih, S. Siswanti, S. K. Octaviani, and A. Sari, “Klasifikasi Penyakit Tanaman Padi Menggunakan Model Deep Learning Efficientnet B3 dengan Transfer Learning,” J. Ilm. SINUS, vol. 19, no. 1, p. 75, Jan. 2021, doi: 10.30646/sinus.v19i1.526.

[13] T. Turahman, E. Hasmin, and K. Aryasa, “Analisis Perbandingan Metode Convolutional Neural Network (CNN) dan MobileNet dalam Klasifikasi Penyakit Daun Padi,” J. JTIK (Jurnal Teknol. Inf. dan Komunikasi), vol. 9, no. 1, pp. 368–377, Nov. 2024, doi: 10.35870/jtik.v9i1.3218.

[14] A. C. Milano, “Klasifikasi Penyakit Daun Padi Menggunakan Model Deep Learning Efficientnet-B6,” J. Inform. dan Tek. Elektro Terap., vol. 12, no. 1, Jan. 2024, doi: 10.23960/jitet.v12i1.3855.

[15] T. Daniya and S. Vigneshwari, “Rice Plant Leaf Disease Detection and Classification Using Optimization Enabled Deep Learning,” J. Environ. Informatics, 2023, doi: 10.3808/jei.202300492.

[16] C. G. Simhadri, H. K. Kondaveeti, V. K. Vatsavayi, A. Mitra, and P. Ananthachari, “Deep learning for rice leaf disease detection: A systematic literature review on emerging trends, methodologies and techniques,” Inf. Process. Agric., vol. 12, no. 2, pp. 151–168, Jun. 2025, doi: 10.1016/j.inpa.2024.04.006.

[17] Q. N. Azizah, “Klasifikasi Penyakit Daun Jagung Menggunakan Metode Convolutional Neural Network AlexNet,” sudo J. Tek. Inform., vol. 2, no. 1, pp. 28–33, Feb. 2023, doi: 10.56211/sudo.v2i1.227.

[18] S. Sathyanarayanan, “Confusion Matrix-Based Performance Evaluation Metrics,” African J. Biomed. Res., pp. 4023–4031, Nov. 2024, doi: 10.53555/AJBR.v27i4S.4345.

[19] M. T. Roseno, S. Oktarina, Y. Nearti, H. Syaputra, and N. Jayanti, “Comparing CNN Models for Rice Disease Detection: ResNet50, VGG16, and MobileNetV3-Small,” J. Inf. Syst. Informatics, vol. 6, no. 3, pp. 2099–2109, Sep. 2024, doi: 10.51519/journalisi.v6i3.865.

[20] A. Ridhovan and A. Suharso, “Penerapan Metode Residual Network (Resnet) Dalam Klasifikasi Penyakit Pada Daun Gandum,” JIPI (Jurnal Ilm. Penelit. dan Pembelajaran Inform., vol. 7, no. 1, pp. 58–65, Feb. 2022, doi: 10.29100/jipi.v7i1.2410.

Downloads

Published

17-12-2025

How to Cite

Paemo, N. D., Ismail , A. R., & Harun, R. (2025). Rice Leaf Disease Classification Based on Convolutional Neural Network Transfer Learning Using MobileNetV2 and EfficientNetB0. Journal of Computer Science and Informatics Engineering , 5(1), 56–68. https://doi.org/10.55537/cosie.v5i1.1371

Issue

Section

Articles