Modeling Flood Hazards in Ambon City Watersheds: Case Studies of Wai Batu Gantung


  • Heinrich Rakuasa National Research Tomsk State University, Russian Federation
  • Benson Joshua University of Calabar
  • Glendy Somae Universitas Indonesia



Ambon, Flood, Geogle Eart Engine, Watershed


Flood hazard modeling in watersheds is an important step in natural disaster risk mitigation, especially in vulnerable areas such as Ambon City. This research focused on the Wai Batu Gantung, Wai Batu Gajah, Wai Tomu, Wai Batu Merah, and Wai Ruhu watersheds, using JRC Global Surface Water Mapping Layers data, NASA SRTM Digital Elevation 30 m data, and USGS Landsat 8 Level 2, Collection 2, Tier 1 data analyzed on the Google Earth Engine (GEE) platform. Prediction of built-up land in flood-prone areas was conducted by utilizing flood history analysis, hydrological modeling, and flood zone mapping. The results show that flood hazard modeling provides a better understanding of flood risk, assists in the development of safer land use planning, and increases public awareness of flood risk in Ambon City. It is hoped that the results of this research can contribute to flood risk management and sustainable regional development in the future.


P. C. Latue and H. Rakuasa, “Spatial Analysis of Landscape Suitability of Ambon City for Settlement Using Geographic Information System,” J. Ris. Multidisiplin dan Inov. Teknol., vol. 1, no. 02, pp. 59–69, 2023, doi: 10.59653/jimat.v1i02.218.

H. Rakuasa, J. K. Helwend, and D. A. Sihasale, “Pemetaan Daerah Rawan Banjir di Kota Ambon Menggunakan Sistim Informasi Geografis,” J. Geogr. Media Inf. Pengemb. dan Profesi Kegeografian, vol. 19, no. 2, pp. 73–82, Dec. 2022, doi: 10.15294/jg.v19i2.34240.

H. Rakuasa, D. A. Sihasale, M. C. Mehdila, and A. P. Wlary, “Analisis Spasial Tingkat Kerawanan Banjir di Kecamatan Teluk Ambon Baguala, Kota Ambon,” J. Geosains dan Remote Sens., vol. 3, no. 2, pp. 60–69, Nov. 2022, doi: 10.23960/jgrs.2022.v3i2.80.

C. Latue, Philia, J. S. Imanuel Septory, G. Somae, and H. Rakuasa, “Pemodelan Daerah Rawan Banjir di Kecamatan Sirimau Menggunakan Metode Multi-Criteria Analysis (MCA),” J. Perenc. Wil. dan Kota, vol. 18, no. 1, pp. 10–17, Mar. 2023, doi: 10.29313/jpwk.v18i1.1964.

S. Oei, “Group Decision Support System for Business Place Establishment using Fuzzy SAW Borda,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 4, no. 5, pp. 964–969, Oct. 2020, doi: 10.29207/resti.v4i5.2459.

H. Rakuasa, D. A. Sihasale, and P. C. Latue, “MODEL TUTUPAN LAHAN DI DAERAH ALIRAN SUNGAI KOTA AMBON TAHUN 2031MODEL TUTUPAN LAHAN DI DAERAH ALIRAN SUNGAI KOTA AMBON TAHUN 2031: STUDI KASUS DAS WAI BATU GANTUNG, WAI BATU GAJAH, WAI TOMU, WAI BATU MERAH DAN WAI RUHU,” J. Tanah dan Sumberd. Lahan, vol. 9, no. 2, pp. 473–486, Jul. 2022, doi: 10.21776/ub.jtsl.2022.009.2.29.

J. Jakubik, M. Muszynski, M. Vossing, N. Kuhl, and T. Brunschwiler, “Toward Foundation Models for Earth Monitoring: Generalizable Deep Learning Models for Natural Hazard Segmentation,” in International Geoscience and Remote Sensing Symposium (IGARSS), 2023. doi: 10.1109/IGARSS52108.2023.10282643.

A. Mehta and K. S. Rawat, “Monitoring flash flood using Optical and Microwave Sensor dataset:- A case study of Cachar district, Assam (India),” in Proceedings - IEEE International Conference on Device Intelligence, Computing and Communication Technologies, DICCT 2023, 2023. doi: 10.1109/DICCT56244.2023.10110185.

J. M. A. Opella and A. A. Hernandez, “Developing a Flood Risk Assessment Using Support Vector Machine and Convolutional Neural Network: A Conceptual Framework,” in Proceedings - 2019 IEEE 15th International Colloquium on Signal Processing and its Applications, CSPA 2019, 2019. doi: 10.1109/CSPA.2019.8695980.

M. B. Ujjinakoppa, U. Kumar, R. Thottolil, and A. Dasgupta, “Multimodal and Multitemporal Spatial Data Analysis in Google Earth Engine Cloud Computing Platform to Detect Human Settlements Without Electricity: A Case Study of Bangalore City,” in 2021 IEEE India Geoscience and Remote Sensing Symposium, InGARSS 2021 - Proceedings, 2021. doi: 10.1109/InGARSS51564.2021.9792041.

T. Yang and Y. Wang, “STUDYING SPATIOTEMPORAL FRACTIONAL VEGETATION COVER VARIATIONS FROM 2000 TO 2020 IN CHANGJIANG BASIN, CHINA WITH GOOGLE EARTH ENGINE,” in International Geoscience and Remote Sensing Symposium (IGARSS), 2021. doi: 10.1109/IGARSS47720.2021.9553983.

P. S. Thenkabail et al., “Global Cropland-Extent Product at 30-m Resolution (GCEP30) Derived from Landsat Satellite Time-Series Data for the Year 2015 Using Multiple Machine-Learning Algorithms on Google Earth Engine Cloud,” US Geol. Surv. Prof. Pap., vol. 2021, no. 1868, 2021, doi: 10.3133/pp1868.

H. Rakuasa and P. C. Latue, “ANALISIS SPASIAL DAERAH RAWAN BANJIR DI DAS WAE HERU, KOTA AMBON,” J. Tanah dan Sumberd. Lahan, vol. 10, no. 1, pp. 75–82, Jan. 2023, doi: 10.21776/ub.jtsl.2023.010.1.8.


A. Ospan, M. Mansurova, E. Kakimzhanov, and B. Aldakulov, “KazRivDyn: Toolkit for Measuring the Dynamics of Kazakhstan Rivers with a Graphics Based on Google Earth Engine,” in SIST 2021 - 2021 IEEE International Conference on Smart Information Systems and Technologies, 2021. doi: 10.1109/SIST50301.2021.9465902.

A. Yang, B. Zhong, and J. Wu, “Monitoring winter wheat in ShanDong province using Sentinel data and Google Earth Engine platform,” in 2019 10th International Workshop on the Analysis of Multitemporal Remote Sensing Images, MultiTemp 2019, 2019. doi: 10.1109/Multi-Temp.2019.8866975.

A. Ikhwan and N. Aslami, “Implementasi Data Mining untuk Manajemen Bantuan Sosial Menggunakan Algoritma K-Means,” JurTI (Jurnal Teknol. Informasi), vol. 4, no. 2, 2020, [Online]. Available:

A. C. Cuellar, L. Cenci, C. Santella, and C. Albinet, “Evaluating the Copernicus Dem Dataset Potential for the Identification of (Flash) Flood-Prone Areas by Using a Geomorphological Approach,” in International Geoscience and Remote Sensing Symposium (IGARSS), 2022. doi: 10.1109/IGARSS46834.2022.9884948.

N. Gopinath, J. Aruneraj, and V. B. Ragul, “IoT based model for flood warning system in waterfall,” in 2022 1st International Conference on Computational Science and Technology, ICCST 2022 - Proceedings, 2022. doi: 10.1109/ICCST55948.2022.10040286.

U. Shastrakar, P. Ghule, A. Jagtap, and V. Degaonkar, “Flood risk mapping using GIS of Mumbai District, India,” in Proceedings - 2023 3rd International Conference on Innovative Sustainable Computational Technologies, CISCT 2023, 2023. doi: 10.1109/CISCT57197.2023.10351332.

X. Zhang and X. Liu, “Comparative study on Extraction of banded water and surface water in urban area based on MNDWI,” in 2022 3rd International Conference on Geology, Mapping and Remote Sensing, ICGMRS 2022, 2022. doi: 10.1109/ICGMRS55602.2022.9849259.

Y. A. Liou, M. S. Le, and H. Chien, “Normalized Difference Latent Heat Index for Remote Sensing of Land Surface Energy Fluxes,” IEEE Trans. Geosci. Remote Sens., vol. 57, no. 3, 2019, doi: 10.1109/TGRS.2018.2866555.

W. M. Wilda and L. Hanum, “Information System Application Alanysis And Design Web-Based Network Complaints Using Php And Bootsrap On Diskominfo,” J. Inf. Syst. Technol. Res., vol. 1, no. 2, pp. 68–78, May 2022, doi: 10.55537/jistr.v1i2.131.

C. Kelleher and L. McPhillips, “Exploring the application of topographic indices in urban areas as indicators of pluvial flooding locations,” Hydrol. Process., vol. 34, no. 3, pp. 780–794, Jan. 2020, doi: 10.1002/hyp.13628.

H. Darabi et al., “Urban flood risk mapping using data-driven geospatial techniques for a flood-prone case area in Iran,” Hydrol. Res., vol. 51, no. 1, 2020, doi: 10.2166/nh.2019.090.

K. T. Huang, “Mapping the Hazard: Visual Analysis of Flood Impact on Urban Mobility,” IEEE Comput. Graph. Appl., vol. 41, no. 1, 2021, doi: 10.1109/MCG.2020.3041371.

I. S. Raungratanaamporn, J. Klaylee, S. Chayaphong, and V. Sornlertlamvanich, “Quantifying Flood Risk and its Exposure Using Catastrophic Model. A Case Study of the Pathumthani Province,” in ICBIR 2022 - 2022 7th International Conference on Business and Industrial Research, Proceedings, 2022. doi: 10.1109/ICBIR54589.2022.9786410.

L. Chai et al., “Estimating Corn Canopy Water Content from Normalized Difference Water Index (NDWI): An Optimized NDWI-Based Scheme and Its Feasibility for Retrieving Corn VWC,” IEEE Trans. Geosci. Remote Sens., vol. 59, no. 10, 2021, doi: 10.1109/TGRS.2020.3041039.

K. Djerriri, A. Safia, and R. Adjoudj, “Object-Based Classification of Sentinel-2 Imagery Using Compact Texture Unit Descriptors Through Google Earth Engine,” in 2020 Mediterranean and Middle-East Geoscience and Remote Sensing Symposium, M2GARSS 2020 - Proceedings, 2020. doi: 10.1109/M2GARSS47143.2020.9105181.