An Intelligence-Oriented System Architecture for Integrated Pharmaceutical Data Analytics and Decision Support

Authors

  • Ningsiah Universitas Aisyah Pringsewu
  • Nur Aminudin Universitas Aisyah Pringsewu
  • Septika Ariyanti Universitas Aisyah Pringsewu
  • Ramil Abbasov George Mason University

DOI:

https://doi.org/10.55537/jistr.v5i1.1461

Keywords:

Pharmaceutical Information System, Data Intelligence, Machine Learning, Hybrid Information System , Integrated Analytics , Decision Support System , Pharmaceutical Data Intelligence, Machine Learning Integration

Abstract

This study proposes and evaluates an intelligence-oriented hybrid information system architecture for pharmaceutical data analytics and decision support. Unlike conventional approaches that treat analytics as an external component, the proposed framework embeds analytical intelligence directly into the core system architecture through an integrated, multi-layer design. The study adopts an experimental and system development methodology using a large-scale public pharmaceutical dataset consisting of 240,591 records and 10 attributes. Supervised machine learning models are implemented to support data classification and intelligence generation, and system performance is evaluated using accuracy, precision, recall, and F1-score. The results demonstrate that the proposed hybrid system consistently outperforms baseline and non-integrated approaches, achieving higher predictive stability and analytical consistency. The main contribution of this study lies in its system-level integration model, which enables the transformation of raw pharmaceutical data into actionable decision-support intelligence. The findings confirm that embedding analytics within information system architecture significantly enhances both analytical performance and decision-making capability in pharmaceutical information systems.

Downloads

Download data is not yet available.

References

[1] A. F. Anggraeni, Sistem Informasi Manajamen. PT. Sonpedia Publishing Indonesia, 2025.

[2] Q. A. Jeperson Hutahaean, Fifto Nugroho, Dahlan Abdullah, Kraugusteeliana, Sistem Pendukung Keputusan. Yayasan Kita Menulis, 2023.

[3] V. K. Dimitriadis et al., “An open-source platform integrating emerging data sources to support multi-modal active pharmacovigilance,” Front. Drug Saf. Regul., vol. Volume 2-2022, 2023, doi: 10.3389/fdsfr.2022.1016042.

[4] S. P. Gardner, “Ontologies and semantic data integration,” Drug Discov. Today, vol. 10, no. 14, pp. 1001–1007, 2005, doi: 10.1016/S1359-6446(05)03504-X.

[5] M. Li et al., “Integrating Real-World Evidence in the Regulatory Decision-Making Process: A Systematic Analysis of Experiences in the US, EU, and China Using a Logic Model,” Front. Med., vol. Volume 8-2021, 2021, doi: 10.3389/fmed.2021.669509.

[6] P. Ullagaddi, “Digital Transformation Strategies to Strengthen Quality and Data Integrity in Pharma,” Int. J. Bus. Manag., vol. 19, no. 5, pp. 16–26, 2024, doi: 10.5539/ijbm.v19n5p16.

[7] H. Ramadhan and N. Matondang, “Optimalisasi Pengelolaan Reference Dan Master Data Dalam Sistem Database,” J. Ilm. Ekon. dan Manaj., vol. 3, no. 5, pp. 120–125, 2025, doi: 10.61722/jiem.v3i5.4533.

[8] S. Selviani, D. Y. Yudhyarta, and H. Susanti, “Pengembangan Model Integrasi Basis Data dan Sistem Manajemen Informasi untuk Optimalisasi Kecerdasan Bisnis,” RIGGS J. Artif. Intell. Digit. Bus., vol. 4, no. 2 SE-Articles, pp. 6094–6101, Jul. 2025, doi: 10.31004/riggs.v4i2.1554.

[9] A. Nguyen, S. Lamouri, R. Pellerin, S. Tamayo, and B. Lekens, “Data analytics in pharmaceutical supply chains: state of the art, opportunities, and challenges,” Int. J. Prod. Res., vol. 60, no. 22, pp. 6888–6907, Nov. 2022, doi: 10.1080/00207543.2021.1950937.

[10] A. M. Aamer, “Data Analytics in the Supply Chain Management : Review of Machine Learning Applications in Demand Forecasting,” Oper. Supply Chain Manag. An Int. J., vol. 14, no. 1, pp. 1–13, 2021, doi: 10.31387/oscm0440281.

[11] T. N. Angula and A. Dongo, “Assessing the impact of artificial intelligence and machine learning on forecasting medication demand and supply in public pharmaceutical systems : A systematic review,” GSC Biol. Pharm. Sci., vol. 26, no. 2, pp. 140–150, 2024, doi: 10.30574/gscbps.2024.26.2.0071.

[12] R. Asaad, R. Ismail Ali, and S. Almufti, “Hybrid Big Data Analytics: Integrating Structured and Unstructured Data for Predictive Intelligence,” Qubahan Techno J., vol. 1, no. 2 SE-Articles, Apr. 2022, doi: 10.48161/qtj.v1n2a14.

[13] Md Arifur Rahman, Md Shakawat Hossain, Abdul Awal Mintoo, and Siful Islam, “A Systematic Review Of Intelligent Support Systems For Strategic Decision-Making Using Human-Ai Interaction In Enterprise Platforms,” Am. J. Adv. Technol. Eng. Solut., vol. 1, no. 01 SE-Articles, pp. 506–543, doi: 10.63125/a5yh1293.

[14] A. R. Buvanachandran, “Agentic Search Systems And Multi-Agent Intelligence Generation,” J. Int. Cris. Risk Commun. Res. , no. SE-Articles, pp. 531–538, Oct. 2025, doi: 10.63278/jicrcr.vi.3390.

[15] F. Oliveira, “Student Research Abstract: A Hybrid Approach to Design Embedded Software Using JavaScript’s Non-blocking Principle,” in Proceedings of the 38th ACM/SIGAPP Symposium on Applied Computing, in SAC ’23. New York, NY, USA: Association for Computing Machinery, 2023, pp. 732–735. doi: 10.1145/3555776.3577210.

[16] C. M. Marques, S. Moniz, J. P. de Sousa, A. P. Barbosa-Povoa, and G. Reklaitis, “Decision-support challenges in the chemical-pharmaceutical industry: Findings and future research directions,” Comput. Chem. Eng., vol. 134, p. 106672, 2020, doi: 10.1016/j.compchemeng.2019.106672.

[17] M. Didas, F. Chali, and N. Elisa, “The Nexus of Big Data and Big Data Analytics for Managerial Business-Driven Decision-Making : A Systematic Review Analysis,” J. ICT Syst., vol. 2, no. June, pp. 36–58, 2024, doi: 10.56279/jicts.v2i1.9014.

[18] Y. Masuda, D. S. Shepard, S. Yamamoto, and T. Toma, “Clinical Decision-Support System with Electronic Health Record: Digitization of Research in Pharma BT - Innovation in Medicine and Healthcare Systems, and Multimedia,” in Innovation in Medicine and Healthcare Systems, and Multimedia, Y.-W. Chen, A. Zimmermann, R. J. Howlett, and L. C. Jain, Eds., Singapore: Springer Singapore, 2019, pp. 47–57. doi: 10.1007/978-981-13-8566-7_5.

[19] J. da A. Moutinho, G. Fernandes, and R. Rabechini, “Evaluation in design science: A framework to support project studies in the context of University Research Centres,” Eval. Program Plann., vol. 102, p. 102366, 2024, doi: 10.1016/j.evalprogplan.2023.102366.

[20] I. G. A. Premananda, A. Tjahyanto, and A. Mukhlason, “Design Science Research Methodology and Its Application to Developing a New Timetabling Algorithm,” in 2022 IEEE International Conference on Cybernetics and Computational Intelligence (CyberneticsCom), 2022, pp. 433–438. doi: 10.1109/CyberneticsCom55287.2022.9865661.

[21] S. Wang, H. Yang, and G. Bai, “Construction of intelligent decision support systems through integration of retrieval-augmented generation and knowledge graphs,” Sci. Rep., vol. 15, no. 1, p. 35462, 2025, doi: 10.1038/s41598-025-19257-3.

[22] Tahmina Akter Rainy, Debashish Goswami, Md Soyeb Rabbi, and Abdullah Al Maruf, “A Systematic Review Of Ai-Enhanced Decision Support Tools In Information Systems: Strategic Applications In Service-Oriented Enterprises And Enterprise Planning,” Rev. Appl. Sci. Technol., vol. 2, no. 01 SE-Articles, pp. 26–52, 2023, doi: 10.63125/73djw422.

[23] S. L. Schmidt and C. Peters, “Requirements for an IT Support System based on Hybrid Intelligence,” in Hawaii International Conference on System Sciences, 2022, pp. 5169–5178. doi: 10.24251/hicss.2022.630.

[24] A. Pesqueira, “Data Science and Advanced Analytics in Commercial Pharmaceutical Functions: Opportunities, Applications, and Challenges BT - Information and Knowledge in Internet of Things,” in Information and Knowledge in Internet of Things, T. Guarda, S. Anwar, M. Leon, and F. J. Mota Pinto, Eds., Cham: Springer International Publishing, 2022, pp. 3–30. doi: 10.1007/978-3-030-75123-4_1.

[25] P. Zuiev et al., “Development of complex methodology of processing heterogeneous data in intelligent decision support systems,” Eastern-European J. Enterp. Technol., vol. 4, no. 9 (106) SE-Information and controlling system, pp. 14–23, Aug. 2020, doi: 10.15587/1729-4061.2020.208554.

[26] V. Mugada, V. Suryadevara, M. Cheekurumilli, and S. R. Yarguntla, “Signal detection in pharmacovigilance: Methods, tools, and workflows from case identification to adverse drug reaction database entry,” Przegląd Epidemiol. - Epidemiol. Rev., vol. 79, no. 3, pp. 404–414, 2025, doi: 10.32394/pe/211665.

[27] M. B. Mariappan, K. Devi, and Y. Venkataraman, “Predicting Order Processing Times in E-Pharmacy Supply Chains During COVID Pandemic Using Machine learning—A Real-World Study BT - Proceedings of International Conference on Data Science and Applications,” in Proceedings of International Conference on Data Science and Applications, M. Saraswat, C. Chowdhury, C. Kumar Mandal, and A. H. Gandomi, Eds., Singapore: Springer Nature Singapore, 2023, pp. 175–197.

[28] M. Wu, L. Hong, Y. Zhao, L. Chen, and J. Wang, “Dosage Prediction in Pediatric Medication Leveraging Prescription Big Data,” IEEE Access, vol. 7, pp. 94285–94292, 2019, doi: 10.1109/ACCESS.2019.2928457.

[29] M. C. Solano and J. C. Cruz, “Integrating Analytics in Enterprise Systems: A Systematic Literature Review of Impacts and Innovations,” 2024. doi: 10.3390/admsci14070138.

[30] C. Schröer, F. Kruse, and J. M. Gómez, “A Systematic Literature Review on Applying CRISP-DM Process Model,” Procedia Comput. Sci., vol. 181, pp. 526–534, 2021, doi: 10.1016/j.procs.2021.01.199.

Downloads

Published

2026-01-31

How to Cite

Ningsiah, Aminudin, N., Ariyanti, S., & Abbasov, R. (2026). An Intelligence-Oriented System Architecture for Integrated Pharmaceutical Data Analytics and Decision Support. Journal of Information Systems and Technology Research, 5(1), 34–43. https://doi.org/10.55537/jistr.v5i1.1461

Similar Articles

<< < 2 3 4 5 6 7 8 9 > >> 

You may also start an advanced similarity search for this article.