Data Mining of Rural Digital Technology Adoption Factors Using Apriori Algorithm
DOI:
https://doi.org/10.55537/jistr.v4i3.1324Keywords:
Apriori Algorithm, Data Mining, Association Rules, Digital Technology Adoption, Rural CommunitiesAbstract
Digital technology adoption in rural communities remains a major challenge due to limited infrastructure, weak internet connectivity, and low levels of digital literacy, which contribute to persistent gaps in digital inclusion. This study aims to analyze the socio-economic factors that influence technology adoption in Kuta Baru Village by applying data mining techniques with the Apriori algorithm within the Knowledge Discovery in Database (KDD) framework. A survey was conducted on 50 respondents selected using purposive sampling, and variables such as education, income, occupation, and internet access were encoded into binary items for analysis. The Apriori algorithm was executed with a minimum support threshold of 15% and a minimum confidence threshold of 60% to extract association rules. Results show that the strongest rule was “Low Internet Access ⇒ Weak Signal” with 100% confidence and 30% support, highlighting infrastructure as the most critical barrier. Another key finding revealed that respondents with education levels above high school had an 85% confidence of using the internet, while those with monthly incomes greater than IDR 3 million demonstrated a 78% confidence of adopting digital technologies. Furthermore, formal sector occupations were associated with consistent internet usage at 72% confidence. These findings suggest that improving infrastructure must be complemented by strengthening socio-economic conditions, particularly education and income, to accelerate rural digital transformation. The study provides empirical evidence and practical implications that can inform policymakers in designing targeted programs to bridge the rural digital divide.
Downloads
References
[1] R. A. Hasani, M. R. Yudianto, dan P. Sukmasetya, “Analysis of Stunting Factors in Toddlers Using Data Mining Method the Apriori Algorithm,” E3S Web Conf., vol. 500, 2024, doi: 10.1051/e3sconf/202450001006.
[2] M. Syahrir dan A. Anggrawan, “Improvement of Apriori Algorithm Performance Using the TID-List Vertical Approach and Data Partitioning,” Int. J. Intell. Eng. Syst., vol. 16, no. 2, hal. 176–191, 2023, doi: 10.22266/ijies2023.0430.15.
[3] A. Hodijah, U. T. Setijohatmo, G. Munawar, dan G. S. Ramadhanty, “Multi-threaded approach in generating frequent itemset of Apriori algorithm based on trie data structure,” Telkomnika (Telecommunication Comput. Electron. Control., vol. 20, no. 5, hal. 1034–1045, 2022, doi: 10.12928/TELKOMNIKA.v20i5.24088.
[4] A. Hodijah dan U. T. Setijohatmo, “Analysis of frequent itemset generation based on trie data structure in Apriori algorithm,” Telkomnika (Telecommunication Comput. Electron. Control., vol. 19, no. 5, hal. 1553–1564, 2021, doi: 10.12928/TELKOMNIKA.v19i5.19273.
[5] J. N. Elquthb dan A. Mansur, “Designing Planograms for Retail Shelves: A Visual Merchandising Approach Using Apriori Algorithm and K-Means Clustering of Customer Preferences,” J. Appl. Data Sci., vol. 6, no. 1, hal. 86–100, 2025, doi: 10.47738/jads.v6i1.375.
[6] M. H. Avizenna, “Applying the Apriori Algorithm to Analyze and Optimize Medical Device Inventory Management,” J. Appl. Data Sci., vol. 3, no. 4, hal. 143–151, 2022, doi: 10.47738/jads.v3i4.33.
[7] D. I. Setiani, F. Nasafi, T. Mauritsius, E. R. Kaburuan, dan R. Jayadi, “Data mining implementation with association method and apriori algorithm for store display design in home center indonesia,” ICIC Express Lett., vol. 15, no. 11, hal. 1221–1226, 2021, doi: 10.24507/icicel.15.11.1221.
[8] H. Kusumo, D. Marlina, M. Novita, dan M. T. Anwar, “Analysis of transaction patterns at drug store with Apriori Algorithm,” J. Phys. Conf. Ser., vol. 1869, no. 1, 2021, doi: 10.1088/1742-6596/1869/1/012070.
[9] D. Ebenezer Frans, “Peningkatan Produksi Budidaya Perikanan dengan Penerapan Algoritma Apriori dan Association Rule,” Maret, vol. 2, no. 2, hal. 2023, 2023.
[10] F. M. Raihan dan Y. Miftahuddin, “Penerapan Algoritma Aprioti Pada Riwayat Data Kecelakaan Lalu Lintas,” Infotek J. Inform. dan Teknol., vol. 5, no. 1, hal. 62–71, 2022, doi: 10.29408/jit.v5i1.4402.
[11] E. Rusmina, V. Sihombing, dan A. Putra Juledi, “Analisis Keterkaitan Antara Gejala Penyakit Menggunakan Algoritma Apriori dalam Bidang Kesehatan,” J. Ilmu Komput. dan Sist. Inf., vol. 7, no. 1, hal. 337–340, 2024, doi: 10.55338/jikomsi.v7i1.3090.
[12] P. M. S. Tarigan, J. T. Hardinata, H. Qurniawan, M. Safii, dan R. Winanjaya, “Implementasi Data Mining Menggunakan Algoritma Apriori Dalam Menentukan Persediaan Barang,” J. Janitra Inform. dan Sist. Inf., vol. 2, no. 1, hal. 9–19, 2022, doi: 10.25008/janitra.v2i1.142.
[13] Y. Andini et al., “Penerapan Data Mining Terhadap Tata Letak Buku,” J. Technol. Informatics Comput. Syst., vol. XI, no. 1, hal. 9–15, 2022.
[14] S. M. A. Ade Irma Amanda, Debi Setiawan, dan Liza Trisnawati, “Penerapan Algoritma Apriori Dalam Menganalisis Pola Minat Beli Konsumen Di Coffee Shop,” JEKIN - J. Tek. Inform., vol. 3, no. 1, hal. 25–32, 2023, doi: 10.58794/jekin.v3i1.483.
[15] A. Rizky Mangunsong, V. Sihombing, dan I. Rasyid Munthe, “Pengembangan Sistem Rekomendasi Produk Berdasarkan Pola Pembelian dengan Pendekatan Algoritma Apriori,” J. Ilmu Komput. dan Sist. Inf., vol. 7, no. 1, hal. 82–86, 2024, doi: 10.55338/jikomsi.v7i1.2718.
[16] F. Sanjaya, M. Salahuddin, L. Haryanto, dan F. Sarnita, “Penerapan Data Mining dalam Analisis Kejadian Banjir di Indonesia dengan Menggunakan Metode Association Rule Algoritma Apriori,” J. Pendidik. Ilmu Pengetah. Alam, vol. 5, no. 1, hal. 42–45, 2024, doi: 10.56842/jp-ipa.v5i1.312.
[17] Reskianto, “Akurasi dalam Analisis Kompetensi Calon Tenaga Keperawatan Menggunakan Algoritma Apriori.,” hal. 1–34, 2023, [Daring]. Tersedia pada: http://scholar.unand.ac.id/29501/2/BAB I.pdf.
[18] H. D. Oktory dan T. Y. Hadiwandra, “Penerapan Algoritma Apriori untuk Penentuan Pola Pembelian Kacamata pada Optik Indah Optikal,” MALCOM Indones. J. Mach. Learn. Comput. Sci., vol. 4, no. 4, hal. 1275–1281, 2024, doi: 10.57152/malcom.v4i4.1353.
[19] R. Abizal, Y. Syahra, dan H. Hafizah, “Implementasi Algoritma Apriori Dalam Menganalisis Pola Penjualan Pada Restoran Sederhana,” J-SISKO TECH (Jurnal Teknol. Sist. Inf. dan Sist. Komput. TGD), vol. 5, no. 1, hal. 76, 2022, doi: 10.53513/jsk.v5i1.4794.
[20] B. Nurislah, Dudih Gustian, dan Seliwati Ginting, “Penerapan Data Mining Untuk Analisis Pola Pembelian Pelanggan Dengan Menggunakan Algoritma Apriori,” J. Rekayasa Teknol. Nusa Putra, vol. 10, no. 1, hal. 44–52, 2024, doi: 10.52005/rekayasa.v10i1.427.
[21] N. ida Nurhidayati, M. Isnaeni, F. Fathurrahman, dan A. Yulistia Alwanda, “Analisis Faktor yang Mempengaruhi Penjualan ChicKen Menggunakan Algoritma Apriori,” J. Print. J. Pengemb. Rekayasa Inform. dan Komput., vol. 3, no. 1, hal. 56–70, 2025, doi: 10.29408/jprinter.v3i1.30976.
[22] F. A. Wijaya dan I. Paryudi, “Analisis Pola Pelayanan Logistik pada PT KAI ( Balai Yasa Manggarai ) Menggunakan Algoritma Apriori,” vol. 6, no. 1, 2025.
[23] I. A. Ashari, A. Wirasto, D. Nugroho Triwibowo, dan P. Purwono, “Implementasi Market Basket Analysis dengan Algoritma Apriori untuk Analisis Pendapatan Usaha Retail,” MATRIK J. Manajemen, Tek. Inform. dan Rekayasa Komput., vol. 21, no. 3, hal. 701–709, 2022, doi: 10.30812/matrik.v21i3.1439.
[24] A. Hudawi, K. Anam, dan M. Rahman, “Penerapan Data Mining untuk Menemukan Pola Asosiasi Aktivitas Belajar dan Prestasi Santri Menggunakan Algoritma Apriori,” TRILOGI J. Ilmu Teknol. Kesehatan, dan Hum., vol. 5, no. 4, hal. 653–662, 2024, doi: 10.33650/trilogi.v5i4.9919.
[25] N. N. Merliani, N. I. Khoerida, N. T. Widiawati, L. A. Triana, dan P. Subarkah, “Penerapan Algoritma Apriori Pada Transaksi Penjualan Untuk Rekomendasi Menu Makanan Dan Minuman,” J. Nas. Teknol. dan Sist. Inf., vol. 8, no. 1, hal. 9–16, 2022, doi: 10.25077/teknosi.v8i1.2022.9-16.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Wanda Windary, Abdul Halim Hasugian

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.