The Integration of HSV and GLCM Features with LDA for Classification of Breadfruit Maturity Levels

Authors

  • Hamdan Pratama University of Medan Area
  • Nurul Khairina University of Medan Area
  • Nanda Novita University of Medan Area
  • Muhammad Huda Firdaus AMIK Medicom
  • Yolanda Y.P. Rumapea University of Methodist Indonesia

DOI:

https://doi.org/10.55537/jistr.v5i1.1377

Keywords:

Image Classification, Maturity Level, Breadfruit, LDA, GLCM

Abstract

Breadfruit is a perennial plant that has historically been distributed throughout Southeast Asia as a food source. Breadfruit that has entered the harvest period or has fallen on its own has several levels of maturity, namely raw, unripe, ripe, and rotten. Breadfruit that has been separated from the tree will have the same characteristics, namely green and slightly yellowish or brownish in colour. The research problem centres on the trouble buyers and sellers have when determining the maturity level of breadfruit. Based on this problem, the purpose of this study is to classify the maturity level of breadfruit using the LDA method. With image classification, it is hoped that the maturity level of breadfruit can be identified more accurately. The research gap in this study lies in the limited number of feature extraction methods used simultaneously, as well as the infrequent use of LDA methods for classification. In this study, Linear Discriminant Analysis is applied together with GLCM and HSV-based feature extraction. The LDA is a statistical method used for classification. LDA focuses on finding lines that separate two or more classes in a dataset by maximizing the distance between class averages and minimizing variance within classes. GLCM feature extraction is an image-processing technique used to evaluate texture. The contribution of this research lies in its improved classification performance and greater accuracy compared to previous studies. It offers a statistical description of how pairs of gray levels are distributed within an image, helping to reveal texture patterns and characteristics. The results of this study show that the classification of maturity levels in breadfruit images is good. This is measured by an accuracy of 89.9333%, precision of 90.1732%, recall of 89.3333%, and an F1-score of 89.7513%.

Downloads

Download data is not yet available.

References

[1] Adeyemi Philips Adebowale, “Flavour Chemistry in Breadfruit (Artocarpus altilis) Parkinson (Fosberg) and Its Hybrids (Artocarpus altilis × Artocarpus mariannensis),” 2025.

[2] W. A. Adebayo and M. O. Ademiju, “Studies on Some Engineering Properties of Breadfruit (Artocarpus Altilis) Starch Flour,” Czech J. Food Sci., vol. 43, no. 2, pp. 105–111, 2025, doi: 10.17221/40/2023-CJFS.

[3] G. J. Dow, N. K. Lincoln, D. Autufuga, and R. Paull, “From Forests to Farming: Identification of Photosynthetic Limitations in Breadfruit Across Diverse Environments,” Tree Physiol., vol. 45, no. 2, p. tpaf007, Jan. 2025, doi: 10.1093/treephys/tpaf007.

[4] Y. Haneishi, T. Noguchi, T. Furusho, J. Yamauchi, and Y. Tanioka, “Characterization of Breadfruit Artocarpus Altilis and Its Long-Term Effect on Glucose and Lipid Metabolism in Rats Fed with a High-Fat Diet,” ACS Food Sci. & Technol., vol. 5, no. 9, pp. 3544–3553, Sep. 2025, doi: 10.1021/acsfoodscitech.5c00575.

[5] A. M. P. Jones, “Investigations into the Morphological, Agronomic, and Nutritional Diversity within Breadfruit (Artocarpus, Moraceae) as a Resource for Food Security,” University of British Columbia, 2021.

[6] L. B. R.-N. Oral O. Daley, Angela T. Alleyne, Seymour A. Webster, Judy Rouse-Miller, Genetic Diversity and Sustainable Utilization of Breadfruit [Artocarpus altilis (Parkinson) Fosberg]. CRC Press, 2025.

[7] N. Zulkifli, N. Hashim, H. H. Harith, M. F. Mohamad Shukery, and D. I. Onwude, “Prediction of The Ripening Stages of Papayas using Discriminant Analysis and Support Vector Machine Algorithms,” J. Sci. Food Agric., vol. 102, no. 8, pp. 3266–3276, 2022, doi: 10.1002/jsfa.11669.

[8] K. Bhavana, R. Sumathi, K. Vanaja, S. Manjula, T. Srinivasulu, and S. Divya, “Fruit Ripeness Detection using RipeNet,” in 2025 International Conference on Electronics and Renewable Systems (ICEARS), 2025, pp. 1598–1604, doi: 10.1109/ICEARS64219.2025.10940159.

[9] D. M. Santana et al., “Integrating Colorimetry and Machine Learning: An Approach for Optimizing Fruit Selection in Licania Tomentosa Seedling Production,” Smart Agric. Technol., vol. 12, p. 101091, 2025, doi: https://doi.org/10.1016/j.atech.2025.101091.

[10] M. S. Sikder, M. S. Islam, M. Islam, and M. S. Reza, “Improving Mango Ripeness Grading Accuracy: A Comprehensive Analysis of Deep Learning, Traditional Machine Learning, and Transfer Learning Techniques,” Mach. Learn. with Appl., vol. 19, p. 100619, 2025, doi: https://doi.org/10.1016/j.mlwa.2025.100619.

[11] S. Song, X. Wu, M. Li, and B. Wu, “Identifying the Geographical Origin of Wolfberry Using Near-Infrared Spectroscopy and Stacking-Orthogonal Linear Discriminant Analysis,” Foods, vol. 14, no. 1684, pp. 1–18, 2025.

[12] L. E. Santo et al., “Compositional and Bioactive Differentiation of Opuntia spp. Fruit Varieties by PCA and LDA,” Foods, vol. 14, no. 18, p. 3170, 2025, doi: 10.3390/foods14183170.

[13] J. Y. Goh, Y. Md Yunos, and M. S. Mohamed Ali, “Fresh Fruit Bunch Ripeness Classification Methods: A Review,” Food Bioprocess Technol., vol. 18, no. 1, pp. 183–206, Jan. 2025, doi: 10.1007/s11947-024-03483-0.

[14] A. T. Laksono and P. W. Rusmamto, “Pengolahan Citra Digital Buah Murbei Dengan Algoritma LDA (Linear Discriminant Analysis),” INAJET, vol. 4, no. 2, pp. 71–78, 2022.

[15] R. I. Borman, D. E. Kurniawan, Styawati, I. Ahmad, and D. Alita, “Classification of Maturity Levels of Palm Fresh Fruit Bunches using The Linear Discriminant Analysis Algorithm,” AIP Conf. Proc., vol. 2665, no. 1, p. 30023, Sep. 2023, doi: 10.1063/5.0126513.

[16] A. Ramadhan, F. R. Chan, N. Yasmin, W. S. Negoro, Mardison, and H. Hendri, “Segmentation and Classification of Vitamin C Content in Red Chili Pepper Images Using the Linear Discriminant Analysis (LDA) Method,” CSRID J., vol. 17, no. 2, pp. 149–162, 2025.

[17] R. Destriana, D. Nurnaningsih, D. Alamsyah, and A. A. J. Sinlae, “Implementasi Metode Linear Discriminant Analysis (LDA) Pada Klasifikasi Tingkat Kematangan Buah Nanas,” Build. Informatics, Technol. Sci., vol. 3, no. 1, pp. 56–63, 2021, doi: 10.47065/bits.v3i1.1007.

[18] N. Astrianda, “Klasifikasi Kematangan Buah Tomat dengan Variasi Model Warna menggunakan Support Vector Machine,” Vocatech Vocat. Educ. Technolgy J., vol. 1, no. 2, 2020.

[19] M. As, Baharuddin, S. Subaedah, A. Bahar, and I. Parewai, “Identification and Classification of The Quality of Snake Fruit using Image Processing Techniques: A Computer Vision Approach,” AIP Conf. Proc., vol. 3316, no. 1, p. 30007, Sep. 2025, doi: 10.1063/5.0295836.

[20] J. Ma, Jie; Li, Minjie; Fan, Wanpeng; Liu, “State-of-the-Art Techniques for Fruit Maturity Detection.,” Agronomy, vol. 14, no. 12, 2024, doi: 10.3390/agronomy14122783.

[21] Z. Guo et al., “Identification of Apple Variety using Machine Vision and Deep Learning with Multi-Head Attention Mechanism and GLCM,” J. Food Meas. Charact., vol. 19, no. 9, pp. 6540–6558, Sep. 2025, doi: 10.1007/s11694-025-03385-5.

[22] A. Setiawan and A. A. Budiman, “Optimization of Gray Level Co-Occurrence Matrix (GLCM) Texture Feature Parameters in Determining Rice Seed Quality,” Emit. Int. J. Eng. Technol., vol. 13, no. 1, pp. 110–123, 2025.

[23] S. S. Chakraborty and P. K. G. Thakurta, “Classification of Tomato Maturity Levels: An Efficient Approach with Statistical Features,” in Computational Intelligence in Communications and Business Analytics, 2025, pp. 70–83.

[24] M. V. Bhanuse and S. B. Patil, “Fruit Quality Grading Using Texture Feature-Based PLS-DA Technique,” J. Uncertain Syst., vol. 16, no. 04, p. 2250014, 2023, doi: 10.1142/S1752890922500143.

[25] S. F. Astari, I. G. P. S. Wijaya, and I. B. K. Widiartha, “Klasifikasi Jenis dan Tingkat Kesegaran Daging Berdasarkan Warna, Tekstur dan Invariant Moment Menggunakan Klasifikasi LDA: Classification of Type and Freshness Level of Meat Based on Color, Texture and Invariant Moment Using LDA Classification,” J. Comput. Sci. Informatics Eng., vol. 5, no. 1, pp. 9–19, 2021.

[26] T. Cheepsomsong, A. Phuangsombut, K. Phuangsombut, P. Sangwanangkul, J. Siriphanich, and A. Terdwongworakul, “Evaluation of Durian Maturity using Short-Range, Coded-Light, Three-Dimensional Scanner with Machine Learning,” Postharvest Biol. Technol., vol. 222, p. 113342, 2025, doi: https://doi.org/10.1016/j.postharvbio.2024.113342.

[27] J. P. ORTIZ, R. C. AGUILERA, S. J. VÁZQUEZ, M. P. ORTIZ, and M. A. C. BENÍTEZ, “Early Detection of Fungal Diseases in Mango Leaves : Fusion of GLCM Features and Vision Transformers with Deep Neural Network Classification,” Fractals, vol. 34, no. 01, p. 2650004, 2026, doi: 10.1142/S0218348X26500040.

[28] H. Amani, A. Teguh, and W. Almais, “Jurnal Ilmiah Teknologi Informasi Asia A hybrid GoogLeNet – GLCM feature extraction framework for textural representation of post-disaster building damage imagery,” vol. 20, no. 1, pp. 16–23, 2026.

[29] D. Alya, L. S. Harahap, and D. Fahlome, “Identifikasi Pengenalan tanda tangan menggunakan Aloritma Backpropagation dan GLCM ( Grey Level Co-Occurrence Matrix),” vol. 11, no. 1, pp. 34–43, 2026.

[30] S. M. Dhavale and P. M. Bangare, “Early Detection of Diabetic Retinopathy through GLCM- based Feature Extraction of Microaneurysms and Exudates,” vol. 2025, no. Icsiaiml 2025, doi: 10.2991/978-94-6463-948-3.

[31] W. Ding, “Algebraic method for Eigenvalue problems of dual quaternion Hermitian matrices and its application in RGB-HSV-based face representation and recognition,” Appl. Math. Lett., vol. 174, p. 109829, 2026, doi: https://doi.org/10.1016/j.aml.2025.109829.

[32] N. Rahayu et al., “Klasifikasi Jenis Kelamin Berdasarkan Citra Mata Menggunakan Fitur HSV dan HOG Dengan Algoritma SVM,” vol. 9, no. 1, 2026.

[33] A. A. Siregar, S. Khosasih, M. A. Irnanda, and J. Nasution, “Analysis of Color Feature-Based Segmentation and Classification of Fruits Images Using Linear Discriminant Analysis Method,” vol. 4, no. 3, pp. 1876–1885, 2026.

[34] H. Wan, Y. Wan, Z. Yang, Y. Han, W. Wu, and M. Yao, “Lemon Defect Detection Based on Seagull Algorithm Optimization–Support Vector Machine Model,” Appl. Fruit Sci., vol. 68, no. 1, p. 40, 2026, doi: 10.1007/s10341-025-01744-6.

[35] S. Liu et al., “Scientific Reports Article in Press Intelligent high-throughput recognition model for bitter gourd fruit morphology and tubercle characteristics IN Intelligent High-Throughput Recognition Model for AR IN,” 2025.

[36] B. J. Wiseman, “Ma’afala Breadfruit Maturity Indicators and The Influence of Harvest Maturity and 1-Methylcyclorpropene on its Postharvest Quality,” 2022.

[37] A. K. Ulandari et al., “Klasifikasi Jeruk Segar dan Busuk Melalui GLCM dan HSV dengan Menggunakan Metode ANN,” vol. 3, pp. 97–102, 2024.

[38] F. M. Fathoni, C. A. Putra, and A. L. Nurlaili, “Klasifikasi Penyakit Daun Anggur Menggunakan Metode K-Nearest Neighbor Berdasarkan Gray Level Co-Occurrence Matrix,” vol. 3, no. 1, 2024.

Downloads

Published

2026-01-31

How to Cite

Pratama, H., Khairina, N., Novita, N., Firdaus, M. H., & Rumapea, Y. Y. (2026). The Integration of HSV and GLCM Features with LDA for Classification of Breadfruit Maturity Levels. Journal of Information Systems and Technology Research, 5(1), 44–53. https://doi.org/10.55537/jistr.v5i1.1377