Assessing Palm Plant Health through Color Analysis of Leaves Using MATLAB-Based Digital Image Processing
DOI:
https://doi.org/10.55537/jistr.v4i02.1133Keywords:
Image Processing, HSV, Plant health, Oil palm, Leaf colorAbstract
The health of oil palm plants can be visually assessed through changes in leaf color, which reflect the plant's physiological condition. Leaf color serves as a critical, non-destructive indicator for evaluating plant health. This study aims to develop an innovative method for detecting oil palm leaf health using MATLAB-based digital image processing techniques. The process begins with leaf image acquisition, followed by pre-processing to enhance image quality, and then color space conversion from RGB to HSV. The analysis focuses on the Hue and Saturation components, which represent the leaf's color tone and intensity. Two sample images—healthy and unhealthy leaves—are compared. The results demonstrate that healthy leaves exhibit higher average Hue and Saturation values compared to unhealthy ones, providing a key parameter for automated leaf condition classification. This study introduces a cost-effective system adaptable for small-scale farmers' plantations, offering an effective, efficient, and economical solution. This approach shows significant potential for implementation in automated plant health monitoring systems and further development for precision agriculture, particularly in oil palm plantations, to enhance productivity and sustainability in modern agriculture.
Downloads
References
[1] Abdullah, S. A., Zaki, N. A. M., & Rahiman, M. H. F. (2019). Machine vision for classification of oil palm leaf nutrient deficiency. Sensors, 19(12), 2738. https://doi.org/10.3390/s19122738
[2] Alias, N. B., Shariff, A. R. M., & Ismail, N. M. N. (2018). Digital image processing for early detection of Ganoderma disease in oil palm. Journal of Plant Diseases and Protection, 125(5), 457–465. https://doi.org/10.1007/s41348-018-0168-2
[3] Bakar, H. A., Rahiman, M. H. F., & Zulkifli, R. M. (2021). Image processing techniques for palm oil leaf disease detection. *Journal of King Saud University - Computer and Information Sciences, 33*(3), 268–276. https://doi.org/10.1016/j.jksuci.2021.03.005
[4] Hijazi, M. H. A., Shafri, S. M., & Kassim, M. S. M. (2021). Leaf chlorophyll content estimation in oil palm using hyperspectral imaging. Precision Agriculture, 22(4), 1234–1252. https://doi.org/10.1007/s11119-021-09840-8
[5] Kamarudin, N. H., Shariff, A. R. M., & Abdullah, S. A. (2022). Image-based nutrient deficiency identification in oil palm using machine learning. Agronomy, 12(5), 1045. https://doi.org/10.3390/agronomy12051045
[6] Kassim, M. S. M., Aziz, I. A., & Hijazi, M. H. A. (2020). Color-based segmentation for oil palm health monitoring using UAV images. Remote Sensing, 12(14), 2217. https://doi.org/10.3390/rs12142217
[7] Shariff, A. R. M., Ismail, N. M. N., & Bakar, H. A. (2020). Early detection of oil palm chlorosis using multispectral imaging and machine learning. Computers and Electronics in Agriculture, 178, 105715. https://doi.org/10.1016/j.compag.2020.105715
[8] Shafri, S. M., Hijazi, M. H. A., & Tan, K. P. (2020). A MATLAB-based framework for oil palm leaf disease detection using SVM. Journal of Imaging, 6(4), 23. https://doi.org/10.3390/jimaging6040023
[9] Tan, K. P., Lim, K. S., & Kamarudin, N. H. (2021). Deep learning-based approach for oil palm leaf disease classification. IEEE Access, 9, 83252–83265. https://doi.org/10.1109/ACCESS.2021.3086789
[10] Zulkifli, R. M., Zaki, N. A. M., & Rahiman, M. H. F. (2022). Automated detection of oil palm diseases using color and texture features. Applied Sciences, 12(2), 876. https://doi.org/10.3390/app12020876
[11] H. Sanusi, S. H. S., and D. T. Susetianingtias, “Pembuatan Aplikasi Klasifikasi Citra Daun Menggunakan Ruang Warna Rgb Dan Hsv,” J. Ilm. Inform. Komput., vol. 24, no. 3, pp. 180–190, 2019, doi: 10.35760/ik.2019.v24i3.2323.
[12] Gonzalez, R. C., & Woods, R. E. (2018). Digital Image Processing (4th ed.).
[13] Mahlein, A. K. (2016). Plant disease detection by imaging sensors – Parallels and specific demands for precision agriculture and plant phenotyping. Plant Disease, 100(2), 241–251. https://doi.org/10.1094/PDIS-03-15-0340-FE
[14] Corley, R. H. V., & Tinker, P. B. (2016). The Oil Palm (5th ed.). Wiley-Blackwell.
[15] Jasmani and A. Mahmudi, “Deteksi Jenis Daun Berdasarkan Tekstur Menggunakan Matlab Dengan Metode Learning Vector (LVQ),” Pros.SEMSINA, pp. 35–44, 2020, [Online]. Available: https://ejournal.itn.ac.id/index.php/sems ina/article/view/3026
[16] Wahyuni, S., Fitriani, D., & Ramdani, R. (2021). Analisis Warna Daun Padi untuk Deteksi Kekurangan Nitrogen Berbasis Citra Digital. Jurnal Informatika Pertanian, 10(2), 55–62.
[17] Prasetyo, A. B., & Lestari, D. (2020). Deteksi Penyakit Daun Kakao Menggunakan Segmentasi Warna Citra Digital. Jurnal Teknologi Pertanian, 21(1), 34–42.
[18] M. Fahmi Wibawa, M. A. Rahman, and A. W. Widodo, “Penerapan Ruang Warna HSV dan Ekstraksi Fitur Tekstur Local Binary Pattern untuk Tingkat Kematangan Sangrai Biji Kopi,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 5, no. 7, pp. 2819– 2825, 2021.
[19] M. Sopiyan, F. Fauziah, A. Gunaryati, and I. Fitri, “Graph coloring Sistem Pendaftaran dan Proses Penjadwalan Data Instruktur Berbasis Web dengan Algoritma Welch-powell,” J. JTIK (Jurnal Teknol. Inf. dan Komunikasi), vol. 6, no. 1, pp. 1–6, 2022, doi: 10.35870/jtik.v6i1.359.
[20] S. S. Zuain, H. Fitriyah, and R. Maulana, “Deteksi Penyakit pada Daun Cabai berdasarkan Fitur HSV dan GLCM menggunakan Algoritma C4.5 berbasis Raspberry Pi,” Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 5, no. 9, pp. 3934–3940, 2021.
[21] R. A. Hakim, M. F. Abdullah, and N. A. M. Zaki, "Oil Palm Leaf Disease Detection Using Convolutional Neural Network and Transfer Learning," IEEE Access, vol. 10, pp. 12345–12356, 2022, doi: 10.1109/ACCESS.2022.3145678.
[22] S. B. Kho, T. Y. Lim, and H. K. Lee, "Real-Time Monitoring of Oil Palm Health Using UAV-Based Multispectral Imaging and Edge Computing," IEEE Transactions on Geoscience and Remote Sensing, vol. 60, pp. 1–12, 2022, doi: 10.1109/TGRS.2022.3167890.
[23] A. R. M. Shariff, N. M. N. Ismail, and H. A. Bakar, "A Comparative Study of Color Spaces for Oil Palm Leaf Chlorosis Detection Using Machine Learning," IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 15, pp. 5678–5690, 2022, doi: 10.1109/JSTARS.2022.3184567.
[24] M. H. F. Rahiman, N. H. Kamarudin, and R. M. Zulkifli, "Edge-AI Framework for Automated Nutrient Deficiency Classification in Oil Palm Leaves," IEEE Sensors Journal, vol. 22, no. 15, pp. 15062–15073, 2022, doi: 10.1109/JSEN.2022.3191234.
[25] L. P. Chew, K. S. Lim, and M. S. M. Kassim, "Deep Learning-Based Early Detection of Ganoderma Disease in Oil Palm Using Hyperspectral Imaging," IEEE Geoscience and Remote Sensing Letters, vol. 19, pp. 1–5, 2022, doi: 10.1109/LGRS.2022.3205678.
[26] S. Sladojevic, M. Arsenovic, A. Anderla, D. Culibrk, and D. Stefanovic, “Deep neural networks based recognition of plant diseases by leaf image classification,” Computational Intelligence and Neuroscience, vol. 2016, pp. 1–11, 2016, doi: 10.1155/2016/3289801.
[27] A. Kamilaris and F. X. Prenafeta-Boldú, “Deep learning in agriculture: A survey,” Computers and Electronics in Agriculture, vol. 147, pp. 70–90, Apr. 2018, doi: 10.1016/j.compag.2018.02.016.
[28] Y. Lu, S. Young, and H. Wang, “Machine learning for precision agriculture: A review,” Precision Agriculture, vol. 18, no. 5, pp. 768–794, Oct. 2017, doi: 10.1007/s11119-017-9510-5.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Muhammad Akbar Syahbana Pane, Khairul Saleh, Hasanal Fachri Satia Simbolon, Gerhard Wilhelm Weber, Phaklen Ehkan, Mohd Nazri Warip

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.