OPTICS-Based Clustering of East Java Regencies and Cities by Divorce Factors

Authors

  • Cesaria Deby Nurhalizah UPN Veteran Jawa Timur
  • Aviolla Terza Damaliana UPN Veteran Jawa Timur
  • Dwi Arman Prasetya UPN Veteran Jawa Timur

DOI:

https://doi.org/10.55537/jistr.v4i3.1227

Keywords:

Divorce, Divorce Factor, OPTICS, Clustering

Abstract

Divorce is a social phenomenon that occurs when a married couple decides to legally end their marriage. This decision is influenced by various factors such as conflict, economic pressure, domestic violence, and deviant behavior. The aim of this study is to group regencies and cities in East Java Province that share similarities in the main causes of divorce, in order to understand the patterns that emerge across regions. The OPTICS (Ordering Points to Identify the Clustering Structure) clustering method was chosen for its ability to identify cluster structures with varying densities. The modeling process was conducted using a proportion-based approach for each causal factor, with optimal parameters obtained through manual grid search using min_samples = 2, xi = 0.05, and min_cluster_size = 0.1. The analysis identified three main clusters, each dominated by conflict, economic hardship, and deviant behavior, respectively. The quality of the clustering was evaluated using a Silhouette Score of 0.588, indicating reasonably good results. These findings are expected to serve as an initial understanding of divorce causes in East Java and can be used as input for the formulation of more targeted social policies.

Downloads

Download data is not yet available.

Author Biographies

Aviolla Terza Damaliana, UPN Veteran Jawa Timur

Department of Data Science, Pembangunan National University Veteran of East Java, Indonesia

Dwi Arman Prasetya, UPN Veteran Jawa Timur

Department of Data Science, Pembangunan National University Veteran of East Java, Indonesia

References

[1] N. Nurhayati, F. Azzahra, S. Ramadani, and ..., “Analisis Metode Klastering Pada Kasus Penyebab Perceraian Berdasarkan Provinsi Dengan Teknik K-Means,” KOMIK (Konferensi …, vol. 4, pp. 278–284, 2020, doi: 10.30865/komik.v4i1.2699.

[2] G. Salsabila and A. Rofi, “Analisis Konteks Wilayah Terhadap Perceraian Di Provinsi Jawa Timur,” J. Ilmu Kel. dan Konsum., vol. 15, no. 1, pp. 1–13, 2022, doi: 10.24156/jikk.2022.15.1.1.

[3] N. Januari, “MENGGALI AKAR MASALAH: Analisis Kasus Perceraian di Indonesia,” Akad. J. Mhs. Humanis, vol. 3, no. 3, pp. 120–130, 2023, doi: 10.37481/jmh.v3i3.613.

[4] S. A. Izzah, I. Zain, and E. O. Permatasari, “Pengelompokan Kabupaten/Kota Berdasarkan Faktor Penyebab Perceraian di Provinsi Jawa Barat,” J. Sains dan Seni ITS, vol. 11, no. 3, 2022, doi: 10.12962/j23373520.v11i3.77018.

[5] N. S. Manna, S. Doriza, and M. Oktaviani, “Cerai Gugat: Telaah Penyebab Perceraian Pada Keluarga di Indonesia,” J. Al-AZHAR Indones. SERI Hum., vol. 6, no. 1, p. 11, 2021, doi: 10.36722/sh.v6i1.443.

[6] Sumiati, “Peranan Badan Penasihat Pembinaan Dan Pelestarian Perkawinan (Bp4) Dalam Memberikan Penataran Dan Bimbingan Perkawinan Di Kantor Urusan Agama (Kua) Kabupaten Maros,” Visipena J., vol. 9, no. 2, pp. 342–357, 2018, doi: 10.46244/visipena.v9i2.464.

[7] M. Mahanani, U. Dwi Safiroh, and M. A. Tubagus, “Rekomendasi Solusi Atas Kasus Perceraian Di Kabupaten Lamongan Berbasis K-Means Clustering,” Semin. Nas. Teknol. Inf. dan Komun. (SeNTIK STI&K) STMIK Jakarta STI&K, vol. 12, p. 2024, 2024.

[8] S. H. Hastuti, A. Septiani, H. Hendrayani, and W. P. Nurmayanti, “Penerapan Metode OPTICS dan ST-DBSCAN untuk Klasterisasi Data Kesehatan,” Edumatic J. Pendidik. Inform., vol. 8, no. 1, pp. 252–261, 2024, doi: 10.29408/edumatic.v8i1.25765.

[9] S. Hidayati, A. T. Darmaliana, and R. Riski, “Comparison of K-Means, Fuzzy C-Means, Fuzzy Gustafson Kessel, and DBSCAN for Village Grouping in Surabaya Based on Poverty Indicators,” J. Pendidik. Mat., vol. 5, no. 2, p. 185, 2022, doi: 10.21043/jpmk.v5i2.16552.

[10] Elvi, “Analisis Algoritma K-Means Dalam Pengelompokan Perkara Perceraian Berdasarkan Kelurahan Di Kota Jambi,” J. Process., vol. 16, no. 1, pp. 9–19, 2021, doi: 10.33998/processor.2021.16.1.920.

[11] M. A. Ahmed, H. Baharin, and P. N. E. Nohuddin, “Analysis of K-means, DBSCAN and OPTICS Cluster algorithms on Al-Quran verses,” Int. J. Adv. Comput. Sci. Appl., vol. 11, no. 8, pp. 248–254, 2020, doi: 10.14569/IJACSA.2020.0110832.

[12] K. Dan, S. Dengan, S. Optics, and D. A. N. Dbscan, “ALGORITMA ORDERING POINTS TO IDENTIFY THE CLUSTERING”.

[13] A. Salsabiela, A. P. Kuncoro, P. Subarkah, and P. Arsi, “Rekomendasi Restock Barang di Toko Pojok UMKM Menggunakan Algoritma K- Means Clustering,” vol. 5, no. 2, pp. 3–8, 2024, doi: 10.37802/joti.v5i2.554.

[14] A. T. Damaliana, A. Muhaimin, and D. A. Prasetya, “Forecasting the Occupancy Rate of Star Hotels in Bali Using the Xgboost and Svr Methods,” J. Stat., vol. 12, no. 1, pp. 24–33, 2024, doi: 10.14710/JSUNIMUS.

[15] A. T. Damaliana, A. Muhaimin, and P. A. Riyantoko, “Peramalan Lonjakan Kasus Harian Covid-19 Di Indonesia Dengan Model Arima,” Pros. Semin. Nas. Sains Data, vol. 3, no. 1, pp. 184–189, 2023, doi: 10.33005/senada.v3i1.112.

[16] J. Anggara, F. R. Ramadhan, and A. F. Syofian, “Pengembangan Sistem Prediksi Harga dan Rekomendasi Mobil Bekas Berbasis Machine Learning,” vol. 7, no. 1, pp. 11–23, 2025.

[17] D. A. Prasetya, A. P. Sari, M. Idhom, and A. Lisanthoni, “Optimizing Clustering Analysis to Identify High-Potential Markets for Indonesian Tuber Exports,” Indones. J. Electron. Electromed. Eng. Med. Informatics, vol. 7, no. 1, pp. 113–122, 2025, doi: 10.35882/skzqbd57.

[18] Mustikasari and N. Salman, “Analisis klaster berbasis kepadatan dengan dbscan dan optics,” Insypro Inf. Syst. Process., vol. 8, no. 1, pp. 1–8, 2023, [Online]. Available: http://journal.uinalauddin.ac.id/index.php/insypro

[19] I. N. Simbolon and P. D. Friskila, “ANALISIS DAN EVALUASI ALGORITMA DBSCAN SPATIAL CLUSTERING OF APPLICATIONS WITH NOISE ) PADA TUBERKULOSIS,” vol. 12, no. 3, 2024.

[20] S. Muhajannah, A. R. Kadisi, and N. Wakhidah, “Penerapan Regresi Linear Terhadap Tingkat Perceraian Di Jawa Tengah Menggunakan Bahasa Python,” J. Tekno Kompak, vol. 19, no. 2, pp. 76–90, 2025, doi: 10.33365/teknokompak.v19i2.54.

[21] M. A. Novianta, S. Syafrudin, and B. Warsito, “K-Means Clustering for Grouping Rivers in DIY based on Water Quality Parameters,” JUITA J. Inform., vol. 11, no. 1, p. 155, 2023, doi: 10.30595/juita.v11i1.16986.

[22] D. A. Prasetya, P. T. Nguyen, R. Faizullin, I. Iswanto, and E. F. Armay, “Resolving the shortest path problem using the haversine algorithm,” J. Crit. Rev., vol. 7, no. 1, pp. 62–64, 2020, doi: 10.22159/jcr.07.01.11.

Downloads

Published

2025-09-30

How to Cite

Nurhalizah, C. D., Damaliana, A. T., & Prasetya, D. A. (2025). OPTICS-Based Clustering of East Java Regencies and Cities by Divorce Factors. Journal of Information Systems and Technology Research, 4(3), 113–123. https://doi.org/10.55537/jistr.v4i3.1227

Similar Articles

You may also start an advanced similarity search for this article.