Implementation Of Data Mining Grouping Of Old Age Guarantee (Jht) Based On Region In Pandemic Period

Authors

  • tatamustikadewi tata STMIK KAPUTAMA BINJAI
  • Rusmin Saragih STMIK Kaputama
  • Siswan Syahputra STMIK Kaputama

DOI:

https://doi.org/10.55537/jistr.v1i2.136

Keywords:

Data Mining, Clustering , Old Age Security, Region

Abstract

During the COVID-19 pandemic, many companies experienced a decline or went bankrupt, so they had to reduce the number of workers and even close the company. BPJS Ketenagakerjaan is a public legal entity that is responsible to the president and functions to administer four programs, namely Work Accident Insurance (JKK), Death Insurance (JKM), Old Age Security (JHT), with the addition of the Pension Guarantee program ( JP). One of them is the submission of claims from too many participants of the Old Age Security program from various regions, especially the Langkat sub-district, so that it becomes a big problem to provide good service or information for the participants. For this reason, the author tries to create a system to support a computerized grouping process that can help automatically classify JHT claims by region, so there is an opportunity to design a grouping data mining system in it. Data mining is a process of mining data in very large amounts of data using statistical, mathematical methods, to utilize the latest artificial intelligence technology. Clustering is a method that is applied in creating a grouping data mining system to make it easier for employees to group JHT by region. Based on the analysis that has been done in the grouping of old-age insurance data using the clustering method, it is necessary to do the cluster process several times to get the same results according to the process that was first carried out, namely in cluster 1 : 2 3 2 cluster 2 : 2 8 2, cluster 3: 2 13 2 with 545 data in cluster 1, 308 data in cluster 2 and 421 data in cluster 3.

Downloads

Download data is not yet available.

References

J. Informasi, J. Wandana, and S. Defit, “Klasterisasi Data Rekam Medis Pasien Pengguna Layanan BPJS Kesehatan Menggunakan Metode K-Means,” vol. 2, pp. 4–9, 2020, doi: 10.37034/jidt.v2i4.73.

S. Rahayu, D. T. Nugrahadi, and F. Indriani, “CLUSTERING PENENTUAN POTENSI KEJAHATAN DAERAH DI KOTA BANJARBARU DENGAN METODE K-MEANS,” vol. 01, no. 01, pp. 33–45, 2014.

A. Ikhwan, “Analisis Cluster Jarak Antar Kecamatan Dengan Menggunakan Metode Euclidean Di Untuk Penetapan Zona Pengoperasian Mobil Mplik Di Kota Medan,” no. August, 2016.

A. Ikhwan and N. Aslami, “Implementasi Data Mining untuk Manajemen Bantuan Sosial Menggunakan Algoritma K-Means,” JurTI (Jurnal Teknol. Informasi), vol. 4, no. 2, 2020, [Online]. Available: http://jurnal.una.ac.id/index.php/jurti/article/view/2103.

R. Setiawan and N. Tes, “PENERAPAN DATA MINING MENGGUNAKAN ALGORITMA K-MEANS CLUSTERING UNTUK MENENTUKAN STRATEGI PROMOSI MAHASISWA BARU ( Studi Kasus : Politeknik LP3I Jakarta ),” vol. 3, no. 1, pp. 76–92, 2016.

A. Manaor and H. Pardede, “ANALISIS PENGELOMPOKKAN PERFORMANCE DOSEN DENGAN METODE,” no. January 2012, 2017.

G. Gustientiedina, M. H. Adiya, and Y. Desnelita, “Penerapan Algoritma K-Means Untuk Clustering Data Obat-Obatan,” J. Nas. Teknol. dan Sist. Inf., vol. 5, no. 1, pp. 17–24, 2019, doi: 10.25077/teknosi.v5i1.2019.17-24.

A. Almira, S. Suendri, and A. Ikhwan, “Implementasi Data Mining Menggunakan Algoritma Fp-Growth pada Analisis Pola Pencurian Daya Listrik,” J. Inform. …, vol. 6, no. 2, pp. 442–448, 2021, [Online]. Available: http://www.openjournal.unpam.ac.id/index.php/informatika/article/view/12278.

B. Kuniadi, D. Puspitaningrum, and F. Farady Coastera, “Perancangan Dan Pembuatan Aplikasi Steganografi Pesan Teks Pada Audio Digital Dengan Metode Least Significant Bit,” vol. 5, no. 3, pp. 285–297, 2017.

A. Ikhwan, “Penerapan Fuzzy Mamdani Untuk Sistem Pendukung Keputusan Pemilihan Laptop,” J. Fasilkom, vol. 9, no. 2, pp. 476–483, 2019, doi: 10.37859/jf.v9i2.1407.

E. Prasetyo, Data Mining Konsep dan Aplikasi Menggunakan Matlab. Yogyakarta: Andi, 2012.

M. Firdaoussi, H. Ghennioui, M. El Kamili, and M. Lamrini, “Performance evaluation of new blind OFDM signal recognition based on properties of the second-order statistics using universal software radio peripheral platform,” Indones. J. Electr. Eng. Comput. Sci., vol. 23, no. 2, pp. 1227–1236, 2021, doi: 10.11591/ijeecs.v23.i2.pp1227-1236.

Additional Files

Published

2022-05-31

How to Cite

tata, tatamustikadewi, Saragih, R., & Syahputra, S. (2022). Implementation Of Data Mining Grouping Of Old Age Guarantee (Jht) Based On Region In Pandemic Period. Journal of Information Systems and Technology Research, 1(2), 112–123. https://doi.org/10.55537/jistr.v1i2.136

Issue

Section

Articles

Similar Articles

1 2 3 4 5 > >> 

You may also start an advanced similarity search for this article.