Learning Rate and Epoch Analysis for Medicinal Plant Identification Using GLCM and BPNN
DOI:
https://doi.org/10.55537/jistr.v5i1.1413Keywords:
Identification Medicinal Plant, Gray-Level Co-occurrence Matrix (GLCM), Backpropagation Neural Networks , Texture Feature Extraction , Learning Rate OptimizationAbstract
Accurate identification of medicinal plants is essential for pharmacology and biodiversity conservation. However, traditional methods rely heavily on subjective visual inspection, which is prone to misclassification due to subtle differences in leaf textures. A primary challenge that remains unaddressed is the understanding of hyperparameter sensitivity within limited datasets, particularly when the subjects exhibit extremely high visual similarity. This study proposes an automated identification approach using Gray-Level Co-occurrence Matrix (GLCM) and Backpropagation Neural Network (BPNN) to classify three Indonesian medicinal species: white ginger, mango ginger, and yellow turmeric. The distinctive focus of this research lies in its attempt to differentiate these specific plants, which possess leaf texture characteristics so similar that they are often indistinguishable to the human eye. This approach involves a systematic analysis of learning rate and epoch parameters to optimize convergence for these nearly identical texture features. A dataset of 63 images was transformed into five GLCM statistical features to serve as the primary inputs for the BPNN. Experimental results demonstrate that classification performance is highly sensitive to parameter tuning. The system achieved its peak accuracy of 65.03% using a learning rate of 0.1 and 100 epochs. The findings reveal that smaller learning rates and limited training iterations facilitate more stable convergence when processing data with high feature similarity. While the accuracy indicates potential for further development, this study provides a significant contribution to creating objective identification methods for visually similar plants and offers empirical insights into optimal parameter selection for texture-based neural network architectures.
Downloads
References
[1] A. K. Mulugeta, D. P. Sharma, and A. H. Mesfin, “Deep learning for medicinal plant species classification and recognition: A systematic review,” Frontiers in Plant Science, vol. 14, 2024.
https://doi.org/10.3389/fpls.2023.1286088.
[2] R. Azadnia et al., “An AI-based approach for medicinal plant identification using deep CNN,” Plants, vol. 11, no. 20, 2022. https://doi.org/10.3390/plants11202723.
[3] O. A. Malik et al., “Automated real-time identification of medicinal plant species in natural environments,” Plants, vol. 11, no. 15, 2022. https://doi.org/10.3390/plants11151952.
[4] J. S. Cope et al., “Plant species identification using digital morphometrics: A review,” Expert Systems with Applications, vol. 39, no. 8, pp. 7562–7573, 2012. https://doi.org/10.1016/j.eswa.2012.01.073
[5] R. Khan et al., “Automated plant leaf classification using texture features,” Journal of Engineering, 2024.
https://doi.org/10.1155/2024/9918296.
[6] K. C. Prabha, “Leaf texture feature extraction using GLCM,” IJRASET, vol. 7, no. 5, 2019.
https://doi.org/10.22214/ijraset.2019.5047.
[7] L. Liao et al., “Impact of hyperparameter tuning on neural network performance,” ACM TOSEM, vol. 31, no. 3, 2022. https://doi.org/10.1145/3506695.
[8] H. Shu and H. Zhu, “Sensitivity analysis of deep neural networks,” AAAI Conference on Artificial Intelligence, 2019. https://doi.org/10.1609/aaai.v33i01.33014943.
[9] C. Isaac and K. Zareinia, “Effect of excessive neural network layers on overfitting,” World Journal of Advanced Research and Reviews, vol. 16, no. 2, 2022. https://doi.org/10.30574/wjarr.2022.16.2.1247.
[10] P. S. Bora et al., “Identification and classification of rare medicinal plants,” Proc. ETNCC, 2024.
https://doi.org/10.1109/ETNCC63262.2024.10767446.
[11] J. J. G. Junior et al., "The Classification of Medicinal Plant Leaves Based on Multispectral and Texture Feature Using Machine Learning Approach," Agronomy, vol. 11, no. 8, p. 1560, Aug. 2021. Available: https://www.mdpi.com/2073-4395/11/8/1560
[12] S. Zhang and L. Wu, "Hyperparameter Optimization of Neural Networks for Image Classification with Small Datasets," Int. J. Electr. Comput. Eng. (IJECE), vol. 12, no. 3, pp. 2450-2459, Jun. 2022. Available: http://ijece.iaescore.com/index.php/IJECE/article/view/24505
[13] R. P. Singh, M. K. Dutta, M. L. Gentili, and R. Musumeci, "Texture-based classification of medicinal plants: A comparative study of GLCM and deep learning under limited data constraints," Biomed. Signal Process. Control, vol. 68, p. 102760, Jul. 2021. Available: https://doi.org/10.1016/j.bspc.2021.102760
[14] H. K. Zulfiani, S. Sucipto, dan A. Abdullah, "Identifikasi Daun Herbal Untuk Tanaman Obat Menggunakan Metode Convolutional Neural Network (CNN)," JATI (Jurnal Mahasiswa Teknik Informatika), vol. 9, no. 6, hlm. 10429, Des. 2025. doi: 10.36040/jati.v9i6.16481.
[15] I. Verawati and R. A. A. Aunurrohim, "Klasifikasi Penyakit Daun Padi Menggunakan KNN dengan GLCM dan Canny Edge Detection," Jurnal Media Informatika Budidarma (MIB), Vol. 8, No. 1, Hal. 517-527, Januari 2024, https://doi.org/10.30865/mib.v8i1.6906.
[16] S. A. R. Srg, I. Irhamna, M. F. Aldi, M. Ramadhan, dan N. L. Siregar, "Ekstraksi Fitur Citra Berdasarkan Tekstur dengan GLCM (Gray Level Co-Occurrence)," JUTISAL (Jurnal Teknik Informatika Komputer Universal), vol. 3, no. 1, hlm. 1–7, Jun. 2023.
[17] C. Tan, L. Tian, C. Wu, and K. Li, “Rapid identification of medicinal plants via visual feature-based deep learning,” Plant Methods, vol. 20, no. 1, p. 81, May 2024, doi: 10.1186/s13007-024-01202-6.
[18] B. Dey, J. Ferdous, R. Ahmed, and J. Hossain, “Assessing deep convolutional neural network models and their comparative performance for automated medicinal plant identification from leaf images,” Heliyon, vol. 9, 2023, doi: 10.1016/j.heliyon.2023.e23655.
[19] R. Rumandan et al., “Klasifikasi citra daun berkhasiat obat,” Journal of Computer System and Informatics (JoSYC), Vol. 4, No. 1, 145-154, 2022.
[20] A. P. Windarto et al., “Optimization of activation function,” Jurnal Media Informatika Budidarma, vol. 8, no. 3, 2024. https://doi.org/10.30865/mib.v8i3.7776.
[21] R. Saputra et al., “Hyperparameter optimization in CNN Algorithm for Chili Leaf Disease Classification,” dalam Proc. 3rd Int. Conf. Adv. Inf. Sci. Develop. (ICAISD 2023), 2024, hlm. 139–142. doi: 10.5220/0012445000003848. https://doi.org/10.47065/josyc.v4i1.2586.
[22] O. A. Malik, et al., "Automated Real-Time Identification of Medicinal Plants Species in Natural Environment Using Deep Learning Models," MDPI Plants, vol. 11, no. 15, hlm. 1952, 2022. [Online]. Tersedia: https://doi.org/10.3390/plants11151952.
[23] S. K. Parinduri, A. Sihotang, M. C. Adelina, dan A. Purnama, "Analisis Jaringan Syaraf Tiruan Terhadap
[24] T. Ericko, “Klasifikasi Jenis Daun Menggunakan Metode Machine Learning dengan Teknik Ekstraksi Fitur Gray Level Co-Occurrence Matrics (GLCM)," Jurnal Komputer dan Informatika, vol. 19, no. 1, hlm. 9–12, Apr. 2024.
[25] I. P. Arisanti dan Y. Yamasari, "Mengenali Jenis Tanaman Obat Berbasis Pola Citra Daun Dengan Algoritma K-Nearest Neighbors," JINACS: Journal of Informatics and Computer Science, vol. 03, no. 02, hlm. 95–103, 2021.
[26] Hasanah et al., “Pengaruh learning rate terhadap akurasi JST,” Jurnal Sistem Informasi, 2025.
[27] B. Setiyono, M. R. Arif, et al., “Identifikasi Tanaman Obat Indonesia Melalui Citra Daun Menggunakan Metode Convolutional Neural Network (CNN),” Jurnal Teknologi Informasi dan Ilmu Komputer, vol. 10, no. 2, 2023. https://doi.org/10.25126/jtiik.2023680.
[28] V. Lusiana, I. H. Al Amin, and B. Hartono, “Pengaruh Ekstraksi Fitur Tekstur Pada Hasil Klastering Data Citra Buah Menggunakan Metode K-Means Cluster,” Journal of Computer System and Informatics (JoSYC), vol. 5, no. 4, Aug. 2024. doi: 10.47065/josyc.v5i4.5770.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2026 fatihani nurqolbiah, Eriene Dheanda Absharina, Aspirani Utari, Mukhlis Febriady, Tommy Saputra

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.



