X-Means Clustering Algorithm in Property Customer Payment Pattern

Authors

  • Edelin Fortuna Universitas Pembangunan Veteran Jawa Timur
  • Dwi Arman Prasetya Universitas Pembangunan Veteran Jawa Timur
  • Kartika Maulida Hindrayani Pembangunan National Veteran University of East Java

DOI:

https://doi.org/10.55537/jistr.v5i1.1228

Keywords:

Clustering, Customer Segmentation, Payment Pattern, Sillhouette Score, X-Means

Abstract

Understanding customer behavior is essential for ensuring the sustainability and competitiveness of property businesses. This study aims to segment customers of PT X based on installment payment patterns using the X-Means clustering algorithm, which automatically determines the optimal number of clusters. From 9,615 transaction records, 386 customer profiles were analyzed using four features: number of transactions, number of late payments, payment differences, and payment status. The analysis produced five customer clusters with a silhouette score of 0.571, reflecting good cluster separation and internal consistency. The results reveal distinct payment behaviors, such as customers who consistently pay on time, those frequently late, and those who have fully completed their payments. These clusters provide practical insights that can support targeted communication, billing, and retention strategies. Furthermore, the study highlights the effectiveness of adaptive clustering techniques in improving segmentation accuracy. The findings contribute to data-driven decision-making in customer management, offering valuable guidance for enhancing operational efficiency and supporting long-term business performance.

Downloads

Download data is not yet available.

References

[1] Sintia Oktapani and Neni Maryani, “Pengaruh Operating Cash Flow, Profitabilitas, dan Leverage terhadap Financial Distress pada Perusahaan Properti dan Real Estate yang Terdaftar di Bursa Efek Indonesia (BEI) Tahun 2018-2022,” El-Mal J. Kaji. Ekon. Bisnis Islam, vol. 5, no. 4, pp. 3089–3104, 2024, doi: 10.47467/elmal.v5i4.1861.

[2] A. Suyatno, S. Arief, M. Asir, M. A. Anwar, and M. D. Sanusi, “Penerapan Strategi Segmenting dan Targeting dalam meningkatkan Kinerja Pemasaran: Literatur review,” J. Econ. Bussines Account., vol. 6, no. 2, pp. 1598–1609, 2023, doi: 10.31539/costing.v6i2.5434.

[3] D. A. Prasetya, A. P. Sari, M. Idhom, and A. Lisanthoni, “Optimizing Clustering Analysis to Identify High-Potential Markets for Indonesian Tuber Exports,” Indones. J. Electron. Electromed. Eng. Med. Informatics, vol. 7, no. 1, pp. 113–122, 2025, doi: 10.35882/skzqbd57.

[4] B. E. Adiana, I. Soesanti, and A. E. Permanasari, “Analisis Segmentasi Pelanggan Menggunakan Kombinasi Rfm Model Dan Teknik Clustering,” J. Terap. Teknol. Inf., vol. 2, no. 1, pp. 23–32, 2018, doi: 10.21460/jutei.2018.21.76.

[5] E. R. Sitorus and I. Nugraha, “Customer Segmentation Analysis with RFM Model (Recency, Frequency, Monetary) and K-Means Clustering: Case Study of Bottled Water Sales at PT XYZ,” JSE (Jurnal Serambi Eng., vol. 10, no. 2, pp. 12665–12675, 2025.

[6] M. Risqi Ananda, N. Sandra, E. Fadhila, A. Rahma, and N. Nurbaiti, “Data Mining dalam Perusahaan PT Indofood Lubuk Pakam,” Com. Commun. Inf. Technol. J., vol. 2, no. 1, pp. 108–119, 2023, doi: 10.47467/comit.v2i1.124.

[7] R. S. Wahono, Data Mining Data mining, vol. 2, no. January 2013. 2023. [Online]. Available: https://www.cambridge.org/core/product/identifier/CBO9781139058452A007/type/book_part

[8] N. Mirantika, T. S. Syamfithriani, and R. Trisudarmo, “Implementasi Algoritma K-Medoids Clustering Untuk Menentukan Segmentasi Pelanggan,” J. Nuansa Inform., vol. 17, no. 1, pp. 196–204, 2023.

[9] F. Handayani, “Aplikasi Aplikasi Data Mining Menggunakan Algoritma K-Means Clustering untuk Mengelompokan Mahasiswa Berdasarkan Gaya Belajar,” J. Teknol. dan Inf., vol. 12, no. 1, pp. 46–63, 2022, doi: 10.34010/jati.v12i1.6733.

[10] D. Marcelina, A. Kurnia, and T. Terttiaavini, “Analisis Klaster Kinerja Usaha Kecil dan Menengah Menggunakan Algoritma K-Means Clustering,” MALCOM Indones. J. Mach. Learn. Comput. Sci., vol. 3, no. 2, pp. 293–301, 2023, doi: 10.57152/malcom.v3i2.952.

[11] K. Maulida Hindrayani, P. R. Aji Data Science, T. F. Maulana, and E. Maya, “Business Intelligence For Educational Institution : A Literature Review,” Netw. Secur. Inf. Syst., vol. 2, no. 1, pp. 22–25, 2020.

[12] T. M. Fahrudin, P. A. Riyantoko, K. M. Hindrayani, and M. H. P. Swari, “Cluster Analysis of Hospital Inpatient Service Efficiency Based on BOR, BTO, TOI, AvLOS Indicators using Agglomerative Hierarchical Clustering,” Telematika, vol. 18, no. 2, p. 194, 2021, doi: 10.31315/telematika.v18i2.4786.

[13] R. Rahmadhan and M. Wasesa, “Segmentation using Customers Lifetime Value: Hybrid K-means Clustering and Analytic Hierarchy Process,” J. Inf. Syst. Eng. Bus. Intell., vol. 8, no. 2, pp. 130–141, 2022, doi: 10.20473/jisebi.8.2.130-141.

[14] K. Maulida Hindrayani, A. Anjani, and A. Lina Nurlaili, “Penerapan Machine Learning pada Penjualan Produk UMKM : Studi Literatur,” Pros. Semin. Nas. Sains Data, vol. 1, no. 01, pp. 19–23, 2021, doi: 10.33005/senada.v1i01.7.

[15] R. Siagian, P. S. Pahala Sirait, and A. Halima, “E-Commerce Customer Segmentation Using K-Means Algorithm and Length, Recency, Frequency, Monetary Model,” J. Informatics Telecommun. Eng., vol. 5, no. 1, pp. 21–30, 2021, doi: 10.31289/jite.v5i1.5182.

[16] S. I. Murpratiwi, I. G. Agung Indrawan, and A. Aranta, “Analisis Pemilihan Cluster Optimal Dalam Segmentasi Pelanggan Toko Retail,” J. Pendidik. Teknol. dan Kejuru., vol. 18, no. 2, p. 152, 2021, doi: 10.23887/jptk-undiksha.v18i2.37426.

[17] R. Adhitama, A. Burhanuddin, and A. Febriani, “Penerapan X Means Clustering Pada UMKM Kab Banyumas Yang Mendukung Mega Shifting Consumer Behavior Akibat Covid-19,” J. Informatics, Inf. Syst. Softw. Eng. Appl., vol. 4, no. 1, pp. 71–80, 2022, doi: 10.20895/inista.v4i1.429.

[18] S. Renaldi. S, D. A. Prasetya, and A. Muhaimin, “Analisis Klaster Partitioning Around Medoids dengan Gower Distance untuk Rekomendasi Indekos (Studi Kasus: Indekos di Sekitar Kampus UPNVJT),” G-Tech J. Teknol. Terap., vol. 8, no. 3, pp. 2060–2069, 2024, doi: 10.33379/gtech.v8i3.4898.

[19] N. R. Handitia and A. Sofro, “Analisis Klaster Data Pendidikan Kota Surabaya Tahun 2022-2023,” MATHunesa J. Ilm. Mat., vol. 13, no. 1, pp. 96–104, 2025, doi: 10.26740/mathunesa.v13n1.p96-104.

[20] E. Nurelasari, “Segmentasi Dan Klasifikasi Perilaku Pembayaran Pelanggan Pada,” vol. XXI, no. 1, pp. 69–76, 2019, doi: 10.31294/p.v20i2.

[21] J. B. Sembiring, H. Manurung, and A. Sihombing, “Pengelompokan Data Tunggakan Pembayaran Kredit Mobil Menggunakan Metode Clustering (Studi Kasus: Cv Citra Kencana Mobil),” J. Manaj. Inform. Jayakarta, vol. 3, no. July, pp. 275–291, 2023, [Online]. Available: http://journal.stmikjayakarta.ac.id/index.php/JMIJayakarta

[22] H. Ramadhan, M. R. Abdan Kamaludin, M. A. Nasrullah, and D. Rolliawati, “Comparison of Hierarchical, K-Means and DBSCAN Clustering Methods for Credit Card Customer Segmentation Analysis Based on Expenditure Level,” J. Appl. Informatics Comput., vol. 7, no. 2, pp. 246–251, 2023, doi: 10.30871/jaic.v7i2.5790.

[23] M. Vahidi Farashah, A. Etebarian, R. Azmi, and R. Ebrahimzadeh Dastjerdi, “An analytics model for TelecoVAS customers’ basket clustering using ensemble learning approach,” J. Big Data, vol. 8, no. 1, pp. 1–24, 2021, doi: 10.1186/s40537-021-00421-1.

[24] S. Yucebas, Ş. Yalpir, L. Genc, and M. Dogan, “Price Prediction and Determination of the Affecting Variables of the Real Estate by Using X-Means Clustering and CART Decision Trees,” JUCS - J. Univers. Comput. Sci., vol. 30, pp. 531–560, 2024, doi: 10.3897/jucs.98733.

[25] K. Tabianan, S. Velu, and V. Ravi, “K-Means Clustering Approach for Intelligent Customer Segmentation Using Customer Purchase Behavior Data,” Sustain., vol. 14, no. 12, pp. 1–15, 2022, doi: 10.3390/su14127243.

[26] D. A. Prasetya, A. P. Sari, P. A. Riyantoko, and T. M. Fahrudin, “The Effect of Information Quality and Service Quality on User Satisfaction of the Government of Kabupaten Malang,” TIERS Inf. Technol. J., vol. 4, no. 1, pp. 32–42, 2023, doi: 10.38043/tiers.v4i1.4328.

[27] P. A. Riyantoko, K. M. Hindrayani, T. M. Fahrudin, and E. M. Safitri, “Southeast Asia Happiness Report in 2020 Using Exploratory Data Analysis,” Netw. Secur. Inf. Syst., vol. 2, no. 1, pp. 16–21, 2020.

[28] M. Rizqi Sulistio, N. Suarna, and O. Nurdiawan, “Analisa Penerapan Metode Clustering X-Means Dalam Pengelompokan Penjualan Barang,” J. Teknol. Ilmu Komput., vol. 1, no. 2, pp. 37–42, 2023, doi: 10.56854/jtik.v1i2.49.

[29] E. Melik-Gaykazyan et al., “From Fano to Quasi-BIC Resonances in Individual Dielectric Nanoantennas,” Nano Lett., vol. 21, no. 4, pp. 1765–1771, Feb. 2021, doi: 10.1021/acs.nanolett.0c04660.

[30] R. C. Tarumingkeng, “Bayesian Information Criterion (BIC),” Proc. Natl. Acad. Sci., vol. 3, no. 1, pp. 1–15, 2015, [Online]. Available: http://dx.doi.org/10.1016/j.bpj.2015.06.056%0Ahttps://academic.oup.com/bioinformatics/article-abstract/34/13/2201/4852827%0Ainternal-pdf://semisupervised-3254828305/semisupervised.ppt%0Ahttp://dx.doi.org/10.1016/j.str.2013.02.005%0Ahttp://dx.doi.org/10.10

[31] R. Kurniawan et al., “Optimizing the Identification of Suitable Congregations for Preachers Using a GMM-PCA-BIC Hybrid Clustering Approach,” in 2024 7th International Conference of Computer and Informatics Engineering (IC2IE), 2024, pp. 1–6. doi: 10.1109/IC2IE63342.2024.10748223.

[32] T. T. Hmwe, N. Y. T. Thein, and K. M. Cho, “Improving clustering quality using silhouette score,” J. Comput. Appl. Res, vol. 1, no. 1, pp. 58–62, 2020.

[33] K. R. Shahapure and C. Nicholas, “Cluster quality analysis using silhouette score,” Proc. - 2020 IEEE 7th Int. Conf. Data Sci. Adv. Anal. DSAA 2020, pp. 747–748, 2020, doi: 10.1109/DSAA49011.2020.00096.

Downloads

Published

2026-01-31

How to Cite

Fortuna, E., Dwi Arman Prasetya, & Hindrayani, K. M. (2026). X-Means Clustering Algorithm in Property Customer Payment Pattern. Journal of Information Systems and Technology Research, 5(1), 1–14. https://doi.org/10.55537/jistr.v5i1.1228

Similar Articles

1 2 3 > >> 

You may also start an advanced similarity search for this article.